
Efficient CP-ABE Attribute/Key Management for IoT Applications

Lyes Touati
Sorbonne universités

Université de Technologie de Compiègne,
CNRS, Heudiasyc UMR 7253,

CS 60 319, 60 203 Compiègne cedex.
Email: lyes.touati@hds.utc.fr

Yacine Challal
Centre de Recherche sur l’Information Scientifique et Technique

CERIST, 05 Rue des Frères Aissou, Ben Aknoun
Algiers, Algeria

Email: ychallal@cerist.dz

Abstract—Ciphertext-Policy Attribute-Based Encryption
(CP-ABE) is a promising cryptographic mechanism for
fine-grained access control to shared data. Attribute/Key
management is a keystone issue in CP-APE because of
low efficiency of existing attribute revocation techniques.
Indeed, existing solutions induce great side effect after each
attribute revocation. The side effect induces rekeying and/or
re-assignment of attributes to all users.

In this paper, we propose a solution which does not require
extra entities like proxies to re-encrypt data after every access
policy change. Moreover, our solution does not imply latencies
following access grants and revocations. We compare our
solution with the batch-based CP-ABE attribute management
technique and we show that our solution outperforms existing
rekeying/revocation techniques in terms of overhead.

Keywords-CP-ABE; Internet of Things; Access Control;
Attribute revocation;

I. INTRODUCTION

The Internet of Things (IoT) is an enabling technology for
Cyber-Physical Systems or Systems of Systems. Indeed, the
Internet is evolving from a network of personal computers
and servers toward a huge network interconnecting billions
of smart communicating objects. It is expected that more
than 50 billions devices will be connected to the Inter-
net by 2020 (sensors, smart-phones, laptops, cars, clothes,
wristwatches, etc.). These objects will be integrated into
complex systems and use sensors and actuators to observe
and interact with their physical environment, and hence
allowing interaction among autonomous systems [1].

Internet of Things applications are ranging from military
(enemy territories exploration, soldiers monitoring, ...), to
e-health (monitoring elder-lies, remote diagnosis, ...), smart
cities, smart grid, smart vehicles and transportation (traffic
jam management), etc. The challenge of securing Internet of
Things applications is a tricky issue as these latter are very
sensitive to attacks and great damages may be caused in both
systems and their users in the case of a possible security
attack. Therefore, fine-grained access control becomes a

Y. Challal is associate professor at Ecole Nationale Supérieure
d’Informatique (ESI, Algiers, Algeria). He is member of Systems Design
Methods lab. (LMCS)

crucial security service to prevent attacks against those
sensitive applications.

Attribute-Based Encryption (ABE) [2], [3], [4] is a
promising mechanism which allows implementing efficiently
fine-grained access control in IoT applications. However,
IoT environments are usually dynamic systems that evolve
through time, therefore, attribute-based encryption must be
combined with an efficient attribute management mecha-
nism. The latter is known to be a tricky issue in ABE,
because an attribute could be shared with many users at
the same time. Thus, revoking that attribute from a user has
inevitably impact on other users sharing the same attribute
i.e. their secret keys must be updated, and therefore, this
could decrease considerably system performances.

In this paper we propose a solution to implement an
attribute revocation mechanism with CP-ABE without re-
quiring data re-encryption after every access policy change.
Our solution eliminates the overhead due to re-encryption
and renaming attributes and does not require proxies to
achieve attribute revocation. Moreover, our solution reduces
to the minimum the number of parts in generated secret keys.

The rest of the paper is organized as follows. We begin
with a presentation of some preliminaries in section II. Then,
we provide an overview and a construction of our solution
in sections III and IV, respectively. Next, we analyze the
performance of our scheme and we compare it against an-
other Batch-based attribute mangement scheme in section V.
Finally, we discuss related works in section VI, and conclude
the paper in section VII.

II. BACKGROUND

In this section we review some basic concepts and notions
related to CP-ABE scheme [3].

Ciphertext-policy Attribute-Based Encryption is an asym-
metric encryption mechanism that allows to implement cryp-
tographic fine-grained access control. Each user is associated
with a list of attributes that reflect her/his role in the system.
A special entity called Attribute Authority (AA)generates a
public key PK which is shared with all system entities, and
generates also users’ private keys SK from their lists of
attributes.



An entity that wishes to encrypt a message will specify
an access policy in a form of an access tree. Attributes list
of a user who wants decrypting an ciphertext must satisfy
the access policy in order to be able to decrypt the message.

Access tree.
An access tree is used to describe access policy of an

encrypted message. For instance, access policy shown in
Figure 1 can be expressed differently as follows: (("Student"
OR "Ph.d Student" OR "researcher") AND ("Physics" OR
"Biology")).

Each non-leaf node of the access tree represents a thresh-
old gate, described by its children and a threshold value.
If numx is the number of children of a non-leaf node x
and kx is its threshold value, then 0 < kx ≤ numx. Two
particular cases are "AND" and "OR" gates: "AND" gate
has kx = numx and "OR" gate has kx = 1.

Each leaf node x of the tree is described by an attribute
and a threshold value kx = 1.

Some functions are defined to facilitate working with
access trees:

• parent(x): denotes the parent of the node x in the tree.
• att(x): is defined only if x is a leaf node, and denotes

the attribute associated with the leaf node x in the tree.
• index(x): denotes the order of the node x between its

brothers. The nodes are randomly numbered from 1 to
num.

AND

OR OR

Physics BiologyStudent Ph.d Student Researcher

Figure 1: Example of an access tree

Satisfying an access tree. Let γ be an access tree with
root r. γx denotes the sub-tree of γ rooted at the node x.
Hence γ is the same as γr. If a set of attributes A satisfies
the access tree γx, we denote it as γx (A) = 1. We compute
γx (A) recursively as follows:

If x is a non-leaf node, evaluate γx′ (A) for all children
x′ of node x. γx (A) returns 1 if and only if at least kx
children return 1.

If x is a leaf node, then γx (A) returns 1 if and only if
att (x) ∈ A.

For example, the attribute set S1 =
{”Student”, ”Physics”} satisfies the ac-
cess policy defined above, but not S2 =
{”Ph.d Student”, ”Computer Science”}.

III. OVERVIEW

In this section we present an overview of our solution to
implement an attribute revocation mechanism for CP-ABE.

A. System Model

Let us consider a set of users Ui where 1 ≤ i ≤ N and a
set of attributes A. Each user Ui holds a subset of attributes
Ai ⊆ A.

In our solution, we target IoT applications where all
start dates and duration of attributes validity are known
beforehand. This is common in institutions where users’
roles and hence attributes do not evolve rapidly. For instance,
this can be applied in health or education institutions where
physicians, nurses, interns, students, professors, etc. and
relating objects hold attributes reflecting their positions,
roles and functions for a known period starting from a known
date.

Thus, the Attribute Authority begins collecting all at-
tributes validity periods. Then, the Attribute Authority deter-
mines for each attribute, separately, the series of time slots
with variable durations as shown in figure 2. Then, The
Attribute Authority assigns an identifier to each time slot
and determines the number of secret key parts to generate
and send to each user according to their attribute validity
periods.

U1

U2

U3

t
Time slot

U4

U5

U6

Attribute validity period

1 2 3 4 5 6 7 8 9 10 11 12

Figure 2: Example of creating time slots with variable
durations

In figure 2, axis of ordinates contains different users
(U1, U2, ..., U6), and axis of abscissa represents time which
is split into different time slots with different durations.
Vertical projections of time events 1 upon axis abscissa are
shown with dotted lines. These projections will determine
beginnings and ends of time slots.

For example, user U1 has a validity period that extends
over three time slots (5, 6 and 7). Table I shows the number
of time slots and their assignment by the Attribute Authority
to each user.

When an attribute related event occurs (attribute validity
period starts or ends), the Attribute Authority increments the

1We mean by event any attribute validity period beginning or ending.



Table I: Example.
Number of time slots Corresponding time slots

U1 3 5,6,7
U2 5 3, 4, 5, 10, 11
U3 4 9, 10, 11, 12
U4 4 4, 5, 6, 7
U5 4 7, 8, 9, 10
U6 7 2, 3, 4, 5, 6, 7, 8

time slot identifier Tatt related to that attribute and informs
all entities in the system. We assume that the system imple-
ments a synchronization protocol that allows all entities to
know when to move to another time slot number for a given
attribute. This mechanism can be achieved by broadcasting
a signal for example, or synchronize all nodes’ clocks and
acquaint all entities of security parameters changing dates.

In our solution, secret key parts (SKP) associated to an
attribute are generated so that a user shifts easily to the
new secret key associated to the current time slot without
being able to generate secret keys for time slots outside the
attribute validity scope for the user.

B. Security Requirements

Our solution guarantees the following security services:
• Data Confidentiality: Unauthorized users who do not

have the required attributes satisfying the access policy
of a ciphertext must be prevented from accessing the
plaintext of the data.

• Backward secrecy: A user gaining new attributes
should not have any access to previous unauthorized
encrypted data even if her/his new list of attributes
satisfies the access policy of the encrypted data.

• Forward secrecy: When some attributes are revoked
to a user, she/he should have no access to current and
future encrypted data if her/his new list of attributes
does not satisfy the access policy of the encrypted data.

• Collusion freedom: Collusion resistance is a required
property of any ABE system. Even if many users not
satisfying the access policy collude, they can obtain no
information about the plaintext of the encrypted data.
This property means that private keys could not be used
together in order to gain more access rights than it
would be if they are used separately.

IV. OUR SOLUTION

A. Notation

We use the following notations to describe our solu-
tion achieving attribute revocation with Ciphrtext-Policy
Attribute-Based Encryption.

Bilinear Maps
Let G0 and G1 be two multiplicative cyclic groups of

prime order p. Let g be a generator of G0 and e be a
bilinear map, e : G0 × G0 → G1. The bilinear map e has
the following properties:

Table II: Summary of notations.
Notation Description
att An attribute
PK Public Key generated by the Attribute Authority
SK Secret Key generated by the Attribute Authority for

each user from her/his attributes list
SKP Secret Key Parts
numx Number of children of a non-leaf node x in an access

tree
kx Threshold value assigned to each non-leaf node in

an access tree
γ Access tree defining access policy for a ciphertext
Tatt Current time slot identifier related to the attribute att
TSL Time Slots identifier List
TSLatt Time Slot identifiers List representing Validity period

for the attribute att for a specific user
TSL (att) Time slot identifier corresponding to the attribute att

in TSL list
M Plaintext of the message to be encrypted
CT Ciphertext representing the encrypted message
Y Leaf nodes set of an access tree

1) Bilinearity: for all u, v ∈ G0 and a, b ∈ Zp, we have
e
(
ua, vb

)
= e (u, v)

ab.
2) Non-degeneracy: e (g, g) 6= 1.
We say that G0 is a bilinear group if the group operation

in G0 and the bilinear map e are both efficiently computable.

B. Solution Concept

In this work, we aim to develop an attribute revocation for
CP-ABE scheme without renaming attributes or introducing
any delay between the real attribute validity period and the
validity period associated to the generated secret key parts
list.

The idea of our solution is to split time axis into time
slots with variable durations. These time slots are determined
according to users attributes validity periods as explained in
section III-A. Instead of renaming attributes for each time
slot, we introduce a new one way hash function that returns
a different result for each time slot.

We define the new one way hash function as follows:

H : A× N −→ G0

(att, i) 7−→ H (att, i)

A denotes the set of all attributes used by the Attribute
Authority in the system. G0 is a bilinear group of prime
order p.

The hash function we use in our approach takes two
parameters. The first parameter is an element from the set of
attributes maintained by the Attribute Authority, the second
one is an integer that represents a time slot queuing ticket.

The probability of collision existence in the one-way hash
function defined above should be infinitely small, which
means:

∀atti, attj ∈ A,∀k, l ∈ N : (atti, k) 6= (attj , l)

⇒ P (H (atti, k) = H (attj , l)) ≈ 0 (1)



By using our new hash function, a secret key part related
to an attribute is valid during only one time slot which is
the one whose identifier is given to the hash function. This
way, the Attribute Authority has not to rename attributes in
order to revoke them from some users, and has not also
to regenerate all secret keys for all users every attribute
revocation, it generates only parts of the secret key related
to an attribute.

C. Primitives

Let G0 be a bilinear group of prime order p, and let g
be a generator of G0. In addition, let e : denote the bilinear
map.

There are four cryptographic primitives:
Setup. The setup algorithm is run by the Attribute Au-

thority at the bootstrap phase. It takes no input other than the
implicit security parameter. It outputs the public parameters
PK which is shared with all the entities of the system and
a master key MK kept secret.

The algorithm operates as follows. It chooses a bilinear
group G0 of prime order p with generator g. Next it will
choose two random exponents α, β ∈ Zp. The public key is
published as:

PK =
(
G0, g, h = gβ , f = g1/β , e (g, g)

α
)

(2)

and the master key is:

MK = (β, gα) (3)

KeyGen(MK, S). The KeyGen primitive is run by the
Attribute Authority for each user joining the system. It takes
as input the master key MK, a set of couples S. Each
element of the set S contains two parts: the first one is an
attribute att ∈ A, and the second one is a list of time slots
numbers TSLatt defining the validity period of the attribute
att.

We can write the set S as:

S = {(att, TSLatt) ,∀att ∈ A} (4)

The Key generation algorithm begins by choosing a
random r ∈ Zp, and then a random rj ∈ Zp for each
attribute j ∈ A. Then, it computes the key as follows:

SK =
(
D = g(α+r)/β ,∀j ∈ A,∀k ∈ TSLj :

Dj,k = gr ·H (j, k)
rj , D′j = grj

)
(5)

Note here that the parameter Dj,k is related to the attribute
j for the time slot number k.

In formula 5, SK represents a user global secret key
throughout the lifetime of the system; it contains all the
subkeys that are used to decrypt ciphertexts. At a specific
time, the user uses one of these subkeys to decrypt data.
The subkeys are extracted from the global secret key SK

by keeping only the elements related to the current time slot
number for each attribute in A. Let TSL be a list of time
slots identifiers representing the current time slots identifiers
of all attributes in A. The subkey related to TSL is noted
SKTSL and is computed as following:

SKTSL =
(
D,∀j ∈ A : Dj,TSL(j), D

′
j

)
(6)

The writing TSL(j) means the element of TSL which
is related to the attribute j, it represents the current time
slot identifier of the attribute j.

Encrypt(PK, M, γ, TSL). The encryption algorithm takes
as input the public parameters PK, a message M , an
access structure γ over the universe of attributes and a
time slots list TSL containing a list of current time slots
numbers associated with the attributes of the access structure
leaf nodes. The algorithm will encrypt M and produce a
ciphertext CT such that only a user that possesses a set
of attributes, during their corresponding time slots in TSL,
that satisfies the access structure will be able to decrypt
the message. We will assume that the ciphertext implicitly
contains γ and TSL.

It operate in the same manner as the standard version
defined in [3] except in using our hash function defined in
IV-B. Each attribute in leaf nodes of the access tree γ has
its corresponding time slot number in TSL. The algorithm
first chooses a polynomial qx for each node x in the access
tree γ. These polynomials are chosen in top-down manner,
starting from the root node R down to leaf nodes. For each
node x in the tree, the degree of the polynomial qx is set
to be one less than the threshold value kx of that node:
dx = kx − 1.

The algorithm chooses a random s ∈ Zp and sets
qR (0) = s. Then, chooses dR other points of the polynomial
qR randomly to define it comletely. For any other node x,
it sets qx (0) = qparent(x) (index (x)) and chooses dx other
points randomly to define qx.

Let, Y be the set of leaf nodes in γ. Y and TSL have the
same size, and every element y ∈ Y has its corresponding
element TSL (y) ∈ TSL. The ciphertext is the constracted
by giving the tree access structure γ, the current time slot
number for each element in Y , and computing:

CT =
(
γ, C̃ = Me(g, g)αs, C = hs,∀y ∈ Y :

TSL (y) , Cy = gqy(0), C ′y = H (att (y) , TSL (y))
qy(0)

)
(7)

Decrypt(CT, SKTSL). The decryption algorithm takes as
input a ciphertext CT , which contains an access policy γ,
and a private key SKTSL constructed from a list A of
attributes associated to the time slots list TSL. The time
slots list TSL used here is the same as the one used for



constructing the ciphertext CT . If the set A associated to a
time slots list TSL of attributes satisfies the access structure
γ then the algorithm will be able to decrypt the ciphertext
and return a message M .

The decryption primitive is pretty similar to the one de-
fined in [3] except in using our hash function defined in sec-
tion IV-B. We first define DecryptNode(CT, SKTSL, x)
which is a recursive function. It takes a ciphertext
CT =

(
γ, C̃, C, ∀y ∈ Y : TSL (y) , Cy, C

′
y

)
, a private key

SKTSL =
(
D,∀j ∈ A : Dj,TSL(j), D

′
j

)
which is associated

with a set A of attributes, and a node x from γ.
Case 1: The node x is a leaf node, then we let i = att (x).

If i ∈ A, then

DecryptNode (CT, SKTSL, x) =
e (Di,T , Cx)

e (D′i, C
′x)

=
e
(
gr ·H (i, TSL (i))

ri , gqx(0)
)

e
(
gri , H (i, TSL (i))

qx(0)
)

= e (g, g)
rqx(0)

.

and if i /∈ A, then DecryptNode (CT, SKTSL, x) = ⊥.
Case 2: The node x is a not leaf node.
The algorithm proceeds as follows: For all nodes z that

are children of x, it calls DecryptNode (CT, SKTSL, z)
and stores the output as Fz .

Otherwise, we compute

Fx =
∏
z∈Sx

F
∆i,S′

x
(0)

z ;

=
∏
z∈Sx

(
e (g, g)

r·qz(0)
)∆i,S′

x
(0)

=
∏
z∈Sx

(
e (g, g)

r·qparent(z)(index(z))
)∆i,S′

x
(0)

=
∏
z∈Sx

e (g, g)
r·qx(i)·∆i,S′

x
(0)

= e (g, g)
r·qx(0) (Using polynomial interpolation)

Where i = index (z) , S′x = {index (z) : z ∈ Sx}.
We recall that ∆i,S (x) is the Lagrange coefficient defined

as follows:

∆i,S (x) =
∏

j∈S,j 6=i

(x− j) / (i− j) .

where i be an element in Zp, and S a set of elements in
Zp.

After describing the function DecryptNode, we can now
write the decryption algorithm. The algorithm begins by
calling the function DecryptNode on the root node R of
the tree γ. If the tree is satisfied by the attributes set A we

set B = DecryptNode (CT, SKTSL, r) = e (g, g)
rqR(0)

=
e (g, g)

rs. The algorithm now decrypts by computing

C̃/ (e (C,D) /B) = C̃/
(
e
(
hs, g(α+r)/β

)
/e (g, g)

rs
)

= Me (g, g)
αs
/
(
e (g, g)

s(α+r)
/e (g, g)

rs
)

= M.

We recall that if the attribute list A that the user possesses
during the time slots in TSL does not satisfy the access
policy γ, the decryption primitive could not decrypt the
ciphertext.

V. PERFORMANCE EVALUATION

A. Simulation Model

For the sake of simplicity and without loss of general-
ity, we consider a group of users which ask gaining the
access right to one attribute. Results can be easily extrapo-
lated when considering multiple independent attributes. We
modeled users’ requests, which represent starting dates of
attribute validity periods, by Poisson process with parameter
λ. The attribute validity periods durations for all users follow
exponential distribution with parameter µ. The following
simulations are made considering a system with one thou-
sand (1000) entities.

We are interested in evaluating the overhead in terms
of generated secret key parts (SKP) for an attribute2. This
metric is very important since it determines the size of
generated secret key sent by the Attribute Authority to
system entities. SKP reflects closely system performances.
Indeed, the less is the number of secret key parts SKP ,
better is the solution.

B. Performance Analysis

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200

Variation of λ

N
um

be
r 

of
 g

en
er

at
ed

 s
ec

re
t k

ey
 p

ar
ts

 S
K

P

 

 
SKP(λ, µ = 0.1)

Figure 3: Number of generated secret key parts SKP with
respect to λ

2We mean by secret key part the element Dj,k in the secret key SK
(see section IV-C)



Figure 3 shows the variation of the secret key parts SKP
needed to be sent with respect to Poisson process parameter
λ. The value fixed for µ is 0.1. The number of generated
secret key parts SKP increases almost linearly with the λ.
our solution shows better results in applications cases where
λ is small.

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

Variation of µ

N
um

be
r 

of
 g

en
er

at
ed

 s
ec

re
t k

ey
 p

ar
ts

 S
K

P

 

 
SKP(λ=10, µ)

Figure 4: Number of generated secret key parts SKP with
respect to µ

Figure 4 shows the variation of the secret key parts
needed to be sent with respect to the exponential distribution
parameter µ. We fixed λ = 10.

According to the two figures 3 and 4 we approximate
SKP (λ, µ) by the following formulas:

SKP (λ, µ) ≈ 2 ∗ λ/µ+ 1 (8)

Figure 5 shows the variation of the number of generated
secret key part SKP with respect to both λ and µ.

0.01

5 10

100

0

100

200

300

400

500

600

700

800

900

1000

 

Variation of λ
Variation of µ

 

N
um

be
r 

of
 g

en
er

ta
ed

 s
ec

re
t k

ey
 p

ar
ts

 S
K

P SKP(λ, µ)

Figure 5: Number of generated secret key parts SKP with
respect to both λ and µ

C. Comparisons

We compare our solution to a Batch-based rekeying
technique (BB-CP-ABE) [5]. In BB-CP-ABE, all time slots

have the same duration ∆t and if attribute validity period
beginning and end occur during a time slot, they are delayed
until the next time slot begins.

We have conducted simulations to compare them and
show the advantages of our new solution. We considered
a system with one thousand (1000) users, where attribute
starting dates follow Poisson process with parameter λ and
attribute validity periods have an exponential distribution
with parameter µ.

We choose three values for time slot duration ∆t of Batch-
Based CP-ABE solution: ∆t1 = 1, ∆t2 = 2 and ∆t3 = 4.
These three cases correspond to three possible configurations
of BB-CP-ABE.

In the first simulation, we set µ = 0.1 and we computed
the variation of the numbers of generated secret key parts
in the four cases with respect to λ. Simulation results are
shown in figure 6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

Variation of λ

N
um

be
r 

of
 g

en
er

at
ed

 s
ec

re
t k

ey
 p

ar
ts

 

 
SKP(λ , µ = 0.1)
BB−CP−ABE (∆ t = 1)
BB−CP−ABE (∆ t = 2)
BB−CP−ABE (∆ t = 4)

Figure 6: Comparison with respect to λ

In the case of our solution, the number of elements to
be sent increases linearly with respect to λ, this can be
explained by the fact that the higher is λ, the less the
time between two incoming users (attribute validity periods);
therefore, the more frequent are overlaps between attribute
validity periods. The curves in the three cases of BB-CP-
ABE are almost constant, this is because the number of
elements to be sent does not depend on λ, it depends only
on µ and time slot duration. For small values of λ, our
solution shows better performance than BB-CP-ABE. It is
important to remember here that our solution does not induce
any delay, The requested validity period is the same as the
delivered validity period. but in BB-CP-ABE and according
to the time slot duration we have an average delay equal to
1/2, 1, 2 respectively in the case of ∆t1, ∆t2 and ∆t3.

In the second simulation, we set λ = 0.1 and we
computed the variation of the numbers of generated secret
key parts in the four cases with respect to µ. Simulation
results are shown in figure 7.

The four curves are inversely proportional to µ. For small
values of µ, our solution shown with dark blue ink gives
best results then the three others. But with larger values of



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10

20

30

40

50

60

70

Variation of µ

N
um

be
r 

of
 g

en
er

at
ed

 s
ec

re
t k

ey
 p

ar
ts

 

 
SKP(λ = 0.1, µ)
BB−CP−ABE (∆ t = 1)
BB−CP−ABE (∆ t = 2)
BB−CP−ABE (∆ t = 4)

Figure 7: Comparison with respect to µ

µ, our solution becomes less efficient then the three others.
We also recall here that our solution contrary to others does
not induce any delay.

VI. RELATED WORKS

Attribute-based encryption (ABE) is a public key encryp-
tion mechanism that allows users to encrypt and decrypt
messages based on descriptive user attributes. There are
mainly two variants of ABE: Ciphertext-Policy Attribute-
Based Encryption [3] and Key-Policy Attribute-Based En-
cryption [4]. In KP-ABE, attributes are used to describe
the encrypted data and policies are built into user’s keys;
while in CP-ABE, the attributes are used to describe a
user’s private key, and an encryptor determines a policy on
who can decrypt the data and include it into the encrypted
data. Therefore, CP-ABE is considered as a promising
solution to resolve the issue of fine-grained cryptographic
access control on shared data. However, CP-ABE suffers
from some drawbacks such as the nonexistence of solutions
implementing efficiently attribute revocation.

We can find some solutions in the literature for attribute
revocation in ABE systems. M. Pirretti et al. proposed in [6]
an idea on how attribute revocation could be implemented
with CP-ABE. The principle of their idea is to renaming
attributes by concatenating them with their corresponding
expiration dates. Once an attribute expiration date comes,
the Attribute Authority renames that attribute and broadcasts
it to all entities in the system, then, it regenerates all
secret keys to the non-revoked users (the revocation is
materialized by not receiving a new secret key including the
renamed attribute). This solution induces a heavy overhead
as long as all entities will be affected by the revocation.
Another solution proposed in [3] by J. Bethencourt et al.
which consists on expressing the revocation condition in
the access tree and including it into the access tree. This
is possible by transforming numerical attributes to non-
numerical ones. This solution transforms access trees bigger

and more complex than before, and therefore, the overhead
considerably increases.

Another kind of solutions consist on using a proxy re-
encryption mechanism (PRE [7]) such as [8], [9], [10] and
[11]. Proxies are provided in the network to absorb the
overhead due to the re-encryption. In [8], Z. Xu et al.
addressed user revocation and key refreshing issue for CP-
ABE sheme in data-owner-centric environments like those
for cloud storage. Their solution named DURKR uses the
proxy re-encryption mechanism and considers only user
revocation. It requires a cloud storage provider to re-encrypt
data for every user request. Y. Cheng et al. considered
in [9] a data storage and delivery system. They solution
consists on combining proxy re-encryption (PRE) and (n, n)
threshold scheme known as Secret Sharing Schemes (SSS).
In [11], Yu et al. tried to resolve the challenging issue of
key revocation in CP-ABE by considering practical scenarios
like data sharing in which semi-trusted on-line proxy servers
are available. Their solution integrates Proxy Re-Encryption
(PRE [7]) technique with CP-ABE and enables the authority
to revoke user attributes and to delegate laborious tasks
to proxy servers. This solution requires to regenerate all
users secret keys and re-encrypting data after every change
occurred in the access policy.

In [10], S. Jahid et al. developed a proxy-based revocation
solution for attribute based encryption called PIRATTE. The
revocation mechanism is based on polynomial secret sharing
which allows to do up to t revocations, where t is the
degree of the polynomial in the mechanism. Their solution
requires a proxy that participates to the decryption process.
Although the scheme achieves dynamic user/attribute revo-
cation without regenerating users keys, it can only revoke
up to a predefined numbers of users/attributes.

In [12] and [13], Wang et al. combined Hierarchical
identity-based encryption (HIBE) [14] system and CP-
ABE to propose a Hierarchical Attribute Based Encryption
(HABE) with with full delegation. The attribute revocation
is achieved by re-encrypting data and updating secret keys.
Authors proposed to use proxy re-encryption (PRE) [7] and
lazy re-encryption to enhance system performances.

In [5], a batch-based solution is proposed to ensure
attribute revocation in CP-ABE scheme. Authors proposed
to split time axis into intervals of fixed duration called
time slots, and all attribute-based access policy changes that
occurred during a given time slot are delayed until it ends.
The challenge of this solution is to find the appropriate
time slot duration that optimizes system performances which
strongly depends on the type of the application.

VII. CONCLUSION AND FUTURE WORK

In this paper we addressed an important issue which is
attribute revocation for attribute based encryption schemes.
In particular, we considered practical application scenarios
in which the Attribute Authority knows beforehand start



dates and durations of all attributes validity periods, and
proposed a scheme supporting attribute revocation. One nice
property of our proposed scheme is that it doesn’t require
extra entities in the network like proxies and does not require
re-encrypting data to achieve the revocation. The solution
we proposed here induces zero delay and a minimum of
generated secret key parts.

ACKNOWLEDGMENT

This work was carried out and funded in the framework
of the Labex MS2T. It was supported by the French Gov-
ernment, through the program "Investments for the future"
managed by the National Agency for Research (Reference
ANR-11-IDEX-0004-02).

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet
of things: A survey,” Comput. Netw., vol. 54, no. 15,
pp. 2787–2805, Oct. 2010. [Online]. Available: http:
//dx.doi.org/10.1016/j.comnet.2010.05.010

[2] L. Pang, J. Yang, and Z. Jiang, “A survey of research progress
and development tendency of attribute-based encryption,” The
Scientific World Journal, vol. 2014, 2014.

[3] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attribute-based encryption,” in Proceedings of the 2007 IEEE
Symposium on Security and Privacy. IEEE Computer
Society, 2007, pp. 321–334.

[4] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-
based encryption for fine-grained access control of encrypted
data,” in Proceedings of the 13th ACM Conference on Com-
puter and Communications Security, ser. CCS ’06. New
York, NY, USA: ACM, 2006, pp. 89–98.

[5] L. Touati and Y. Challal, “Batch-Based CP-ABE with attribute
revocation mechanism for the internet of things,” in 2015
International Conference on Computing, Networking and
Communications, Wireless Networks Symposium (ICNC’15
WN), Anaheim, USA, Feb. 2015.

[6] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters,
“Secure attribute-based systems,” in Proceedings of the
13th ACM Conference on Computer and Communications
Security, ser. CCS ’06. New York, NY, USA: ACM, 2006,
pp. 99–112. [Online]. Available: http://doi.acm.org/10.1145/
1180405.1180419

[7] M. Blaze, G. Bleumer, and M. Strauss, “Divertible proto-
cols and atomic proxy cryptography,” in In EUROCRYPT.
Springer-Verlag, 1998, pp. 127–144.

[8] Z. Xu and K. Martin, “Dynamic user revocation and key
refreshing for attribute-based encryption in cloud storage,” in
Trust, Security and Privacy in Computing and Communica-
tions (TrustCom), 2012 IEEE 11th International Conference
on, June 2012, pp. 844–849.

[9] Y. Cheng, Z.-y. Wang, J. Ma, J.-j. Wu, S.-z. Mei, and J.-c.
Ren, “Efficient revocation in ciphertext-policy attribute-based
encryption based cryptographic cloud storage,” Journal of
Zhejiang University SCIENCE C, vol. 14, no. 2, pp.
85–97, 2012. [Online]. Available: http://dx.doi.org/10.1631/
jzus.C1200240

[10] S. Jahid and N. Borisov, “Piratte: Proxy-based immedi-
ate revocation of attribute-based encryption,” arXiv preprint
arXiv:1208.4877, 2012.

[11] S. Yu, C. Wang, K. Ren, and W. Lou, “Attribute based
data sharing with attribute revocation,” in Proceedings of
the 5th ACM Symposium on Information, Computer and
Communications Security, ser. ASIACCS ’10. New York,
NY, USA: ACM, 2010, pp. 261–270. [Online]. Available:
http://doi.acm.org/10.1145/1755688.1755720

[12] G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based
encryption for fine-grained access control in cloud storage
services,” in Proceedings of the 17th ACM Conference on
Computer and Communications Security, ser. CCS ’10. New
York, NY, USA: ACM, 2010, pp. 735–737.

[13] G. Wang, Q. Liu, J. Wu, and M. Guo, “Hierarchical attribute-
based encryption and scalable user revocation for sharing data
in cloud servers,” Computers & Security, vol. 30, no. 5, pp.
320 – 331, 2011, advances in network and system security.

[14] D. Boneh, X. Boyen, and E.-J. Goh, “Hierarchical identity
based encryption with constant size ciphertext,” in Advances
in Cryptology—EUROCRYPT 2005, ser. Lecture Notes in
Computer Science, vol. 3494. Berlin: Springer-Verlag,
2005, pp. 440–456, available at http://www.cs.stanford.edu/
~xb/eurocrypt05a/.


