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ABSTRACT

Graph Edit Distance (GED) is a well-known measure used in the graph matching to measure the similar-
ity/dissimilarity between two graphs by computing the minimum cost of edit operations needed to transform
one graph into another. This process, Which appears to be simple, is known NP-hard and time consuming
since the search space is increasing exponentially. One way to optimally solve this problem is by using Branch
and Bound (B&B) algorithms, Which reduce the computation time required to explore the whole search
space by performing an implicit enumeration of the search space instead of an exhaustive one based on a
pruning technique. nevertheless, They remain inefficient when dealing with large problem instances due to
the impractical running time needed to explore the whole search space. To overcome this issue, We propose in
this paper three parallel B&B approaches based on shared memory to exploit the multi-core CPU processors:
First, a work-stealing approach where several instances of the B&B algorithm explore a single search tree
concurrently achieving speedups up to 24x faster than the sequential version. Second, a tree-based approach
where multiple parts of the search tree are explored simultaneously by independent B&B instances achieving
speedups up to 28x. Finally, Due to the irregular nature of the GED problem, two load-balancing strategies
are proposed to ensure a fair workload between parallel processes achieving impressive speedups up to 300x.
all experiments have been carried out on well-known datasets

1. Introduction

Graph Edit Distance (GED) approach is a well-known technique
used in graph matching to measure the minimum distance between
two graphs. The goal of the GED is to compute the amount of dis-
similarity between two graphs. In other words, it represents the cost
of the best set of edit operations needed to transform one graph
into another [1]. The allowed operations are insertion, deletion, and
substitution, which are applied on vertices and edges. This problem
is known to be very challenging due to its NP-hardness nature [2],
which means that the time complexity of computing the minimum
distance between two graphs increases exponentially with the number
of vertices. The importance of the GED comes from its multitude of use
cases. It can be used to find exact and also inexact matching, where
some errors are tolerated. Moreover, the GED can be used in various
areas [3], especially in areas related to pattern recognition, such as,
handwriting recognition [4-6], person identification and authentica-
tion (example: fingerprint recognition) [7], documents analysis [5,8,91,

and in graph database search [10]. It can also be found in machine
learning, nearest-neighbor classification, and in data mining area [5].

To compute optimally the GED between two graphs, often A-
Star [11] based search technique is used in the literature [3]. However,
this latter needs huge memory resources, making it impossible to use
for large graphs. The Branch and Bound (B&B) algorithms are well-
known techniques for optimally solving optimization problems via an
intelligent enumeration of the search space. This method models the
search space as a tree using two components: branching and bounding.
The branching is a recursive process that divides the search space of
a given problem into several smaller sub-problems, which are treated
the same way until solutions are found. After the branching process, the
bounding operator evaluates the ability of each generated sub-problem
to contain good solutions. The B&B algorithm uses several techniques
(elimination and selection) to avoid exploring non-promising sub-
problems (branches) and accelerate the search process. Due to the
complexity of the GED problem, which is NP-hard [2] for general
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graphs, B&B algorithms require a long time to find the optimal solution,
especially when dealing with large graphs. To overcome this drawback,
we consider parallel computing as an interesting way to reduce the
running time of such algorithms.

In this paper, we study the impact and possible gain of exploiting
the computing resources of a single machine. Indeed, most of today’s
computers are parallel from a hardware perspective, offering a decent
computing power that is not exploited in most cases. For this reason,
and to evaluate the possible gain that can be achieved, several B&B par-
allelization approaches are proposed. The goal here is to measure each
parallel approach’s impact and behavior in reducing the execution time
and efficiently exploring the search space. The proposed approaches
can be classified as high-level parallelization in which several instances
of the B&B algorithm simultaneously explore the search space.

Two parallel approaches are proposed. The first one is based on a
work-stealing strategy in which the goal is to accelerate the sequential
process of exploring the search tree without increasing the amount
of used memory space. Hence, we have several instances of the B&B
algorithm exploring concurrently a single search tree stored in a shared
memory space accessible in read/write operations by all parallel B&B
instances. Experiments on reference datasets using 16 CPU cores show
a relative speedup around 24 x compared to the sequential version. To
explore more efficiently the search space and to study the impact of
the diversification, a second parallel B&B approach is proposed. This
latter, denoted by the tree-based approach, simultaneously explores
multiple parts of the search tree using several independent B&B in-
stances. Therefore, updating the Upper Bound (UB), which eventually
end-up with an improvement in complexity. This approach is based
on the Master-Worker paradigm, where the master splits the search
tree over several B&B instances (workers). After that, each worker
builds its own search tree exploiting a private memory space. The only
shared information in this approach is the value of the UB, which is
updated each time a better path is explored. The obtained results for
this approach show the positive impact of diversifying the exploration
process allowing us to reach a relative speedup around 28 x compared
to our sequential B&B implementation. However, due to the irregular
workload of sub-problems in the search tree, many workers finish
quickly (stay idle), while others have a long-running time. The impact
of load-balancing strategies on solving the GED problem was not well
studied in Abu-Aisheh et al. [12,13]. For this reason, we proposed two
original load-balancing strategies to prevent the idleness of workers.
Our first load-balancing strategy consists of using the master as a
load balancer by changing its exploration strategy to ensure the large
availability of sub-problems. The idea to avoid the idleness is to give
read/write access to all parallel workers to pick up a sub-problem from
the load-balancer work pool whenever their work pools are empty. The
second way to ensure a fair load between workers is to combine the
previous two parallel approaches. The idea here is to allow the workers
to perform k iterations locally and then merge their own local work-
pool into one global work-pool shared between them. The results using
reference datasets show the good impact of combining diversification
and load-balancing strategies. Moreover, adding load-balancing tech-
niques allowed to improve the performance of the tree-based parallel
approach by a factor up to 11x.

The rest of the paper is organized as follows. Section 2 presents
some basic notations and definitions related to the GED. In Section 3,
we discuss related work. Section 4 describes the sequential B&B algo-
rithm and its components. In Section 5, we detail our proposed parallel
B&B approaches and load-balancing strategies. Section 6 reports com-
putational results. Finally, conclusions and perspectives are given in
Section 7.

2. Problem definition

In the following, we first define some basic concepts and then define
the GED problem formally.
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2.1. Graph

A graph is a structure used to model pairwise relations between
objects [14]. It contains a set of vertices connected by a set of edges.
Formally, a labeled graph is denoted by G = (V, E, a, ), where:

* V ={v,0,,...,0,}, a set of n vertices.

« E={e,ep,...,e,}, aset of medges (ECV X V).

* « is a labeling function on the vertices, i.e., a : V' > Ly,.

+ B is a labeling function for the edges, i.e., f : V - Lg.
Ly, and Lg are restricted to labels that can be given by a set of
integers, the vector space R", or symbolic labels.

In this paper, we consider simple undirected labeled graphs without
loops.

2.2. GED operations

In the GED problem, an edit path that transforms a graph g, into
a graph g, consists of a set of edit operations. Each edit operation
performs an action on either vertices or edges, or both vertices and
edges. In this work, we consider a vertex-centric approach in which edit
operations are performed on vertices, and those performed on edges
are implied. Thus, only the following three basic edit operations are
allowed: insertion, deletion, and substitution.

Let us consider a vertex v; € V; from g, and a vertex u; € V, from
g, we denote:

1. v; — u;: vertex v; is substituted by vertex u;.
2. v; — e: vertex v; is deleted from g,.
3. € — u;: vertex u; is inserted into g;.

2.2.1. Implied edges operations

In vertex-centric approach, edit operations on edges are implied.
Indeed, an edge is substituted, deleted or inserted, depending on edit
operations performed on its incident vertices [5]. Let us consider two
vertices v, v’ from graph g, and two other vertices u,u’ from graph g,.
If we perform the following two edit operations {v — u} and {v' — v’}
on vertices v and v/, respectively, three cases of implied operations on
edges can be distinguished:

1. If there is an edge e, = (v,v’) between v and v’ in g, and there
is also an edge e, = (u,u’) between u and v’ in g,, then e, is
substituted by e,, denoted e; — e,.

2. If there is an edge e; = (v,v') between v and v’ in g; and there
is no edge between u and ' in g,, then e, is deleted from g,
denoted e; — e.

3. If there is no edge between v and v’ in g; and there is an edge
e, = (u,u’) between u and «’ in g,, then e, is inserted into g,
denoted € — e,.

Note that all its incident edges are automatically deleted if a vertex
is deleted from g,. Similarly, if a vertex is inserted in g, all its incident
edges in g, are inserted if their other ends already exist in g;.

2.3. Cost function

An essential parameter in GED is the cost function. This latter
assigns a value (cost) to each edit operation applied to vertices or
edges. Thus, the costs assigned to the edit operations affect the optimal
edit path. The cost function represents an efficient way to integrate
domain-specific information about object similarity. The cost c(o) of a
particular edit operation o is defined with respect to the underlying
label alphabets. The cost for the three edit operations can be given by:

cclu—>e)=0
ccle—>v)=20
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(@) g1

Fig. 1. Both source and target graphs.

ccu-mv)=clv-u=4p

We should mention that the substitution cost is zero (f = 0) if the
two vertices or edges have the same label.

2.4. Graph edit distance

Let g, = (V. E|, a1, 5)) and g, = (V, E,, ay, f,) be the source and the
target graph respectively. The graph edit distance between g, and g,,
denoted by d(g;, g,), represents the amount of dissimilarity between the
two graphs. In other words, it represents the best set of edit-operations
{ej,e,, ..., e} (in terms of cost) that transform g; into g,.

Formally, the GED between g; and g, is defined by:

k
d(81.82) = MiNe, ¢y .. e )er(sr.87) Z c(ey)
i=1

where y(g;, g,) denotes the set of all edit paths transforming g, into g,.
Each path contains a set of edit operations 1 = {e|,e,, ..., e}, and c(e;)
denotes the cost of the edit operation ¢; [5].

2.5. Example

Let the source g, and the target g, graphs illustrated in Fig. 1. Let
the cost of deletion/insertion operations be 2, and the substitution cost
be 1. The optimal path that edits graph g, to get graph g, is obtained
by performing four vertex substitutions, which imply the substitution
of three edges and the deletion of two others. The complete edit path:

Ag1,8) = { (i {B} = u{B}), (1{A} - u{A)}), (L2, 0)) =€),
W3{A} = uz{B}), (v3,02) = (u3,up)), (La{A} — us{A}), (vg,0)) —
(ug,uy)), (g, 3) = €), (v4,03) = (uy,u3)) }

Thus, the cost of the optimal path that transforms g, into g, is:
d(g),8)=75.

3. Related work

In pattern recognition, real-world objects are generally represented
by numerical vectors (Images). This representation is sensitive for
translation, rotation, scaling, etc. For that, graph-based representation
is used to overcome these issues. This latter comes with the power
of being unchangeable and more expressive due to information that
can be added in nodes/edges. Exact matching (Exact-GED) supposes a
noiseless environment. Thus, it considers two graphs (gl and g2) as
a match if and only if the GED between the two graphs (GED(g1,g2))
is equal to zero. However, due to the noise factor, two graphs of the
same object may not match completely. In this case, we call it inexact
matching (Inexact-GED), where two graphs with an edit path below
a given threshold are accepted as a match. Therefore, the GED can
be used in exact and inexact matching scenarios. Several applications
require an optimal solution (edit path) that transforms one graph into
another. For that, they generally use optimal approaches like A-star
and B&B algorithms. However, these latter approaches can also be
used to obtain a sub-optimal solution by, for instance, stopping the
computation after a given amount of time. In the rest of this section, we
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will focus on existing works that deal with the optimal GED problem,
which are based on tree traversal and parallelism [15].

After the introduction of GED by A. Sanfeliu and K.-S. Fu in
1983 [16]; relatively in the same year of the final publication; Bunke
and Allermann [1] were the first to implement and adapt the A-star
algorithm to solve the GED problem. The authors’ idea to find the
optimal solution is to map all elements from the first graph into the
second graph’s elements. Thus, generating a search tree that models all
possible solutions. The mapping uses the three edit operations: dele-
tion, insertion, and substitution. The authors’ approach was validated
through some small graphs.

The A-start GED finds the optimal solution but suffers from huge
computational and space complexity. In [17], the authors, proposed an
approximate approach for GED problem called A*-Beamsearch. It limits
the size of the A-star priority queue to a certain size s. Only the s partial
edit paths with the lowest costs (real+estimated) are kept. The larger
the size of the beam-search queue, the more accurate it becomes.

To speed up the A-star search process, Riesen et al. [4] proposed
a bipartite heuristic that gives an estimation of the future cost 2 (lower
bound). This heuristic is based on Bipartite matching. At first, two cost-
matrices are created that contain the different assignments of vertices
and edges, respectively, for the three operations (substitution, deletion,
and insertion) between graph one and graph two. Then, Munkres
algorithm [18,19] is used to compute the best assignment of vertices
and edges separately. In the end, the & value is the sum of vertices’ best
assignment and edges’ best assignment. In [5], the authors used their
heuristic to approximately solve the GED problem. Thus, providing a
good upper bound for the problem. The bipartite heuristic has been
discussed and improved in [20,21] to compute more accurately lower
bounds.

In [6], Abu-Aisheh et al. used a Depth First Search (DFS) approach
to solve the GED problem optimally. The author’s goal was to reduce
the amount of used memory space compared to the A-star algorithm.
The approach begins by sorting vertices using Munkres’ algorithm
and then explores the search space according to the depth-first search
strategy. In [13], the authors proposed a shared-memory parallelization
of their DF-GED algorithm denoted by PDFS. In this latter, several
parallel instances of the DF-GED explore the search space simultane-
ously. Furthermore, the authors used a load-balancing strategy to avoid
the idleness of parallel threads. The results show an improvement of
20% in execution time compared to their DF-GED algorithm. However,
the experiments did not indicate the impact of the parallelization and
the load-balancing strategy through the classical metrics (speedup and
efficiency). In [12], the authors proposed a distributed memory version
of their DF-GED algorithm. The proposed parallelization uses a master—
slave paradigm and is implemented using the Hadoop framework [22].
This distributed version has shown similar results compared to their
serial implementation in terms of execution time.

In [23], Gouda and Hassaan proposed an edge-based depth-first
method called CSI_GED to solve the uniform GED problem, where all
edit operations have the same cost. The authors’ idea is to map all edges
from the first graph into the second graph’s edges, and the vertices
are then implied. A detailed experiment section validated the proposed
approach.

In [24,25], Blumenthal and Gamper adapted the DF — GED al-
gorithm in [6] for GED problem with an uniform cost for all edit
operations. In this case, the complexity of computing the estimated
cost can be reduced from cubic time using the Munkres algorithm to
linear time. In the same paper, the authors proposed a generalization
for CSI_GED method in [23] to cover non-uniform metric edit costs
called CSI_GED™. This generalization consists to use Munkres’ algo-
rithm [18] to compute the future estimated cost. In [26], the same
authors proposed a C++ library for solving the GED problem in exact
and approximate ways called GEDLIB. The library contains several
literature algorithms for the GED problem, and it can be used as a basic
implementation for other new algorithms.
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In [27], Chang et al. proposed new lower bounds for the GED
problem, which significantly reduce the memory footprint of A-star and
DFS methods. Based on these lower bounds, they developed AStar+-LSa
and AStar+-BMa algorithms, which can process graphs with up to sixty
vertices.

In [28], Wang et al. proposed a parallel implementation of the
AStar+-LSa algorithm proposed in [27] for solving the exact GED. The
main idea of their algorithm, called PGED, is to allocate the most
time-consuming step of the AStar algorithm (searching the optimal
vertex mapping) to several threads simultaneously. The authors’ results
showed a 2x speedup compared to their sequential version of the
algorithm.

In inexact matching, a parallel algorithm was presented in 1997 by
Allen et al. [29]. Their algorithm works on two graphs with the same
number of vertices, and the distance measure is called the relational
distance. The best match between gl and g2 is obtained by finding the
best permutation of the vertices that align g1 with g2. For each possible
permutation, the edges of the two graphs g1 and g2 are compared, and
for each unmatched edge, an error of one is added. The parallel part
is based on a B&B search with heuristics to compute a good estimated
distance between gl and g2 (lower bound). An important point, the
algorithm is formulated to work on the specific architecture of the
single-instruction-stream/multiple-data-stream (SIMD) parallelism. The
experiment was done on small and medium graphs between 10 and 27
vertices, using massive parallelism with 1024 processors.

Due to the NP-hardness nature of the GED problem, computing the
minimum distance even for small graphs is time-consuming. For this
reason, most of the above literature gave just a proof of concept of
their approaches using typically small datasets or partially exploring
the search space within a certain amount of time. In [30], we propose
a tree-based approximate approach that give near-optimal results. Since
exploring the whole search tree is impractical, this approach keeps only
the best nodes at each tree level for further exploration. This reduces
the execution time enormously without scarifying the solution quality.

To deal with larger graphs and report the impact of parallelism on
optimally solving the exact GED problem, we propose several parallel
B&B approaches and load-balancing strategies to accelerate the search
process and efficiently exploit the computing resources available in all
recent computers.

4. B&B for the GED problem

Branch and Bound (B&B) algorithms are well-known techniques for
optimally solving combinatorial optimization problems. They were first
proposed in 1960 by A. H. Land and A. G. Doig to solve discrete pro-
gramming problems [31]. These algorithms are based on an intelligent
and explicit enumeration of all the search space, which is modeled as
a search tree. This latter is explored using the branching and bounding
operators. The goal is to find the best edit path in terms of cost that
transforms one graph into another. The branching of a search tree node
generates a set of successors by splitting its search space into several
smaller sub-problems. These successors are handled in the same way
until reaching solutions. After the branching, the bounding operator
evaluates the ability of each successor to improve the best solution
found. Otherwise, the branch is pruned, and the successor is deleted.
Furthermore, Algorithm 1 describes the general structure of the used
B&B algorithm.

In the following, we describe the adaptation of the different B&B
operations for the GED problem.

4.1. Branching

The B&B algorithms operate on a search tree that models the whole
search space. The B&B search tree is generated using the branching
operator. This latter decomposes a problem (tree node) into several
smaller sub-problems, which are treated in the same way until reaching

Parallel Computing 114 (2022) 102984

Algorithm 1: Pseudo-code of the sequential B&B algorithm

Data: Non-empty attributed graphs g, = (V, E|, a;, ;) and
& = (V2. By, @y, ) where V; = {uy,...,upy,} and
Vo ={vg, vy}

Result: optimal path

1 OPEN <« {intial problem}; best_path < null;
optimal_path < null;
2 U B = compute_upper_bound();

3 while (OPEN = ¢) do

4 node « select_node(OPEN);

5 if LB(node) < U B then

6 if node is a leaf node then

7 optimal_path < node;

8 UB « LB(node);

9 else

10 Generates successors nd; from node;
11 foreach successor(nd;) do

12 if LB(nd;) < UB then

13 ‘ OPEN <« add_node (nd));
14 else

15 L prune(ndj);
16 else

17 L prune(node);

18 return optimal path;

leaf nodes. The branching for the GED problem is based on the idea of
mapping vertices from the first graph g, to vertices of the second graph
g5, i.e., we use a vertex-centric approach. The mapping performs the
classical edit operations: substitution, deletion, and insertion. Formally,
a search tree node nd is characterized by:

+ A set of past edit operations known as path and denoted by A =
{e}.e,, ..., e}, where ¢; is one of the edit operations (substitution,
deletion, and insertion).

+ A remaining vertices from the two graphs (g, and g,) denoted by
Ry, and Ry, respectively.

+ A processed vertices from the two graphs (g, and g,) denoted by
Py, and Py, respectively.

In this way, the root node (initial problem) is defined as |Ry| = |V},
[Rysl = V2], Pyy =0, and Py, = 0.

The branching on a search tree node nd generates |R;,| new succes-
sors by performing the substitution of a vertex u € R;,; with all vertices
in Ry,. In other words, each successor node nd ; (where j € [1..|Ry,|D
represents the mapping of a vertex u € Ry, by a vertex ' € Ry, is
defined as follows:

Ry (nd;) = Ry (nd) \ {u}
Ryy(nd;) = Ryy(nd) \ {u'}
Py(nd;) = Py (nd) U {u}

Pyy(nd)) = Pyy(nd) U {u'}

Alnd;) = And) U {u — u'y).

In addition to the successors generated above, we add a new suc-
cessor that represents the deletion of the vertex u € Ry, as follow:

Ry (nd;) = Ry, (nd) \ {u}
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Z]

Vs

Fig. 2. General scheme of the search tree related to the GED problem.

Ry, (nd;) = Ry, (nd)
PVl(ndj) = Py (nd) U {u}
RVZ(ndj) = Py,(nd)

Alnd;) = And) U {u — €}.

This process is repeated until reaching leaf nodes where R, = @.
In this case, if the set of remaining vertices related to the second graph
is not empty (Ry, # #); we insert all the remaining vertices in Ry, at
once. This process is described as follow:

Ry\(nd;) = Ry (nd)
Ryy(nd;) = Ryy(nd) \ Ryy(nd)
Py\(nd;) = Py (nd)

PV2(ndj) = Py,(nd) U Ry,(nd)

Vi, [i = 1, |Ryp(nd)|| Mnd;) = And) U {€ > u}.

Fig. 2 illustrates a search tree example used to solve the GED
problem. At each level in this figure, one vertex v; from the first graph
g is mapped with the remaining vertices u; of g, and ¢ to generate
deletion.

4.2. Evaluation (bounding)

After the branching process, the bounding consists of evaluating
the ability of each successor to contain good solutions. Two different
bounds can be distinguished: the Lower Bound (LB) and the Upper
Bound (UB).

Upper Bound: The UB represents an upper limit of the evaluation of
all search tree nodes. Initially, any solution to the GED problem can be
considered as an initial value for the UB, which is updated as soon as
a new path (solution) is found. In our case, the UB is computed using
the polynomial-time algorithm proposed by Riesen et al. [5]. First, this
algorithm computes the best vertices assignment of two input graphs.
After that, the algorithm determines the corresponding implied edges.
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This creates a complete path that transforms the source graph into the
target graph.

The Lower Bound: For a given sub-problem, the LB is viewed as an
estimation of the lower evaluation of all its solutions. The LB represents
the most consuming part of the B&B algorithm since it is computed for
each successor. For this reason, it needs to be efficient and optimized
as much as possible. To our knowledge, the best LB known for the
GED problem is based on the bipartite heuristic proposed in [4,5]. The
value of this LB is a combination of two parts: the real cost (g) and
the estimated cost (k). i.e., LB = g + h. The real cost of a search
tree node (nd) represents the cost of all edit operations performed on
this path. In other words, g(nd) = Score(A(nd)) = Zli'l cost(e;). The
estimated cost & represents the best mapping of the remaining vertices
and edges from the two graphs using the bipartite graph matching
method. It represents the sum of the optimal assignment of vertices
and the optimal assignment of edges using the Munkres algorithm [18].
This algorithm operates over costs matrices defined using remaining
vertices and remaining edges from the two graphs (target and source).
In this way, we can give a good estimation of the LB in polynomial time
complexity.

5. Proposed parallel B&B approaches for GED problem

This section presents our parallel B&B schemes for the multi-
core CPU processors available in all recent computers. The proposed
schemes are based on a shared memory model aiming to reduce
communication costs. Before introducing our proposed approaches and
load-balancing strategies, we will briefly introduce the classifications
of the parallel B&B algorithm.

5.1. Taxonomies of parallel B&B

The sequential B&B algorithm is not sufficient when dealing with
large problem instances. Parallel computing using High Performance
Computing (HPC) architectures represents a promising way to deal with
such challenging problems. The parallelization of B&B algorithm is well
studied in the literature, and several classifications of this method have
been proposed [32-34].

Trienekens et al. [33] classified the parallelization of the B&B
algorithm as high level and low level according to the degree of the par-
allelization of the B&B operations. Gendron et al. [34] identified three
types of parallel B&B algorithm according to the search tree paralleliza-
tion degree. The first type denoted by node based introduces parallelism
when performing operations on generated sub problems. The second
type denoted by tree-based consists of building the search tree in paral-
lel by performing operations on several sub-problems simultaneously.
Finally, the third one (multi-search) implies that several search trees are
built in parallel, and each tree is characterized by different operations.
The most recent classification is the one proposed by Melab and Mez-
maz [35]. It represents a generalization of the classification proposed
by Gendron et al. [34]. In this classification, four parallel models of
the B&B algorithm are identified: (1) The parallel multi-parametric model
uses several instances of the B&B algorithm simultaneously. This model
can be viewed as a coarse-grained parallelization where each instance
of the B&B algorithm uses its own parameters. (2) The parallel tree explo-
ration model consists of simultaneously exploring several sub-problems
that define different research sub-spaces of the initial problem. This
means that branching, bounding, and pruning operators are executed
in parallel synchronously or asynchronously by different processes
exploring these sub-spaces. (3) The parallel evaluation of bounds model
allows the parallelization of the bounding of sub-problems generated
by the branching operator. (4) The parallel evaluation of a single bound
does not change the design of the algorithm because it is similar to the
serial version except that the bounding operator is faster.
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Fig. 3. Parallel B&B approach based on work-stealing paradigm.

5.2. Work-stealing parallel B&B approach (W Sge )

Our first parallel B&B approach aims to accelerate the B&B execu-
tion time by accelerating the sequential process of exploring the search
tree. As depicted in Fig. 3, this approach can be viewed as a high-level
parallelization that aims to accelerate the exploration of a single search
tree using a work-stealing strategy. In this strategy, several instances
of the B&B algorithm explore concurrently a single search tree stored
in a shared work-pool accessible by all B&B instances. The work-pool
represents the data structure that contains a set of active sub-problems
obtained after branching and bounding operations. In this first parallel
approach, all the B&B instances use the same work-pool to store and
pick up sub-problems. The end of this parallel version is reached when
the shared work-pool is empty, and all the parallel threads become
inactive.

5.2.1. Work-stealing parallel B&B functioning

This parallel approach is based on a collegial way of thinking, in
which all parallel instances share the same work-pool and perform
the same actions. The goal is to accelerate the sequential process of
exploring the search tree. Thus, there is no distinction between all
parallel processes.

Initially, we have a single instance of the B&B algorithm, referred to
as the main thread, that loads the two graphs and creates the root node.
The main thread performs the branching and bounding operations on
the root node, creating a set of active sub-problems stored in the
shared-work-pool. After that, several instances of the B&B algorithm are
launched to explore simultaneously and concurrently the same search
tree. In other words, each instance of the B&B algorithm picks up
a sub-problem from the shared work-pool in a concurrent safe way.
The resulting nodes (sub-problems) from the branching and bounding
operations for each B&B instance are inserted in the shared work-pool.
This process is repeated until the shared work-pool becomes empty.
Hence, the end of the parallel algorithm is reached.

The key to ensuring the efficiency of this parallel approach is
to provide good management of the shared work-pool since this lat-
ter is accessible by all parallel threads concurrently. To ensure no
concurrency access problems, a thread-safe data structure is used to
implement the shared work-pool.

Since all the B&B instances use the same work-pool with a depth-
first strategy, this approach has a low memory utilization (slightly
bigger than the serial version). The other interesting fact about this
approach is the fair workload distribution between parallel processes,
which prevents idleness, especially for these problems.

The Downside of this approach is the low impact of the diversi-
fication and the scalability issue that may occur when increasing the
number of parallel B&B instances due to the concurrent access to the
same work-pool. To avoid these problems, we propose a second parallel
B&B approach.

5.3. Tree-based parallel B&B approach (T Bpg )

The goal of our B&B algorithm is to find the best path, in terms
of evaluation (the path with the minimum cost), in a search tree that
models the search space.

Our second parallel approach is based on the fact that each path in
the search tree can be explored independently from the others. Indeed,
this approach represents a tree-based parallelization in which several
completely independent parallel B&B instances simultaneously explore
several paths (parts) of the search tree. As depicted in Fig. 4, each
instance of the B&B algorithm independently explores a part of the
search tree using a private work-pool to store and pick up sub-problems.
Compared to the first parallel approach, multiple work-pools are used,
each containing a sub-search tree. The only shared information between
parallel B&B instances is the UB value. This latter is updated each time
a B&B instance finds a better path that transforms the source graph
into the target graph. The end of this parallel version is reached when
all private work-pools are empty, and all the parallel threads become
inactive.

5.3.1. Tree-based parallel B&B functioning

This parallel approach aims to diversify the search process by
exploring simultaneously several parts of the search tree, i.e., several
independent B&B instances operate on their own local work-pools. This
parallel approach is implemented using the Master/Worker paradigm.
Indeed, we have a single instance of the master process (controller)
in the system, and the others are workers. Initially, the workers are
blocked, waiting for nodes to explore. The controller loads the problem
data and creates the root node. After that, it explores several search
tree levels, using its own B&B algorithm, which creates a set of active
sub-problems stored in its own work-pool. At this point, each sub-
problem represents a sub-search tree. After that, the master wakes
blocked workers, where each one explores a sub search tree obtained
from the master in its private local work-pool. The local work-pool
evolves constantly, and when it becomes empty, its owner becomes
idle. The end of the parallel approach is reached when all parallel
processes are idle, including the master process.

The primary benefit of this approach is: (1) Reducing the synchro-
nization points, which allows exploiting the available multi-core CPU
processors more efficiently. (2) Diversifying the search process which
leads to improving the UB more efficiently. This allows an efficient
pruning process that significantly reduces the explored search space.
Hence, the overall complexity in terms of execution time. However, the
major limitation of this approach is the idleness of parallel processes
due to the unfair workload distribution in each branch.
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Fig. 4. Tree-based parallel B&B approach.

5.4. Exploration strategies for our parallel B&B approaches

Another important aspect that influences the efficiency of our par-
allel approaches is the exploration strategy used to explore the search
tree. Indeed, two main exploration strategies exist in the literature:
Breadth-First Strategy (BFS) and Depth First Strategy (DFS).

The BFS begins by exploring all the sub-problems of a given level
before starting the exploration of lower levels. Unfortunately, this strat-
egy often results in a huge memory footprint without even reaching leaf
nodes, making it inefficient and impossible to use for large graphs. In
addition to the huge memory footprint of this strategy, it also implies a
poor pruning process which increases the B&B complexity dramatically,
i.e., the UB stays the same since we reach leaf nodes only in the last
level of the search tree.

In our approaches, we opted for the DFS. After the branching
process, this latter strategy explores the most recently created sub-
problem added to the work-pool. Hence, a global strategy that explores
leaf nodes (solutions) first, which improves the UB. Thus, avoiding the
exploration of a huge number of non-promising branches. In addition,
the choice of this strategy is motivated by its small memory footprint
allowing us to treat large graphs. Our proposed parallel approaches are
viewed as high-level parallelization where several instances of the B&B
algorithm explore the search space using one or several work-pools.

In our First parallel approach (W Sgep), a standard DFS strategy
is used. i.e., Each instance of the B&B algorithm picks up from the
shared work-pool the most recent added sub-problem. After that, the
selected sub-problem will be the subject of the branching and bounding
operations which creates a set of actives sub-problems added directly
to the shared work-pool.

In our second parallel approach (T Bgg ), two exploration strategies
are used according to the role of the process. A DFS for the workers and
a mixed exploration strategy for the master. Indeed, the master explores
the first levels of the tree using the BFS to generate a large number of
sub-problems divided between the workers. After that, the master uses
a standard DFS exploration to prevent memory saturation.

5.5. Load-balancing strategies

Due to the complexity of the GED problem and the irregular work-
load of B&B branches, a load-balancing strategy must be used. This
strategy aims to increase the efficiency of our tree-based parallel ap-
proach (T Bgg ) by avoiding the idleness of parallel threads. In the
following, we describe two load-balancing strategies we propose.

5.5.1. The use of load-balancer (LB,)

Our first load-balancing strategy uses the master process as a load
balancer. This strategy avoids the idleness by giving a read/write
access to all parallel B&B instances (workers) to pick up a sub-problem
from the load-balancer work-pool whenever their own work-pools are

empty. Furthermore, the load-balancer uses an adaptive exploration
strategy to ensure the wide availability of sub-problems. This adaptive
strategy uses the BFS exploration model whenever the size of the
load-balancer work-pool is less than a certain limit. Beyond this limit,
the load-balancer adapts its exploration strategy and uses the DFS to
explore the search tree. This strategy aims to enable wide availability of
sub-problems without generating a huge memory footprint. Whenever
a thread work-pool is empty, the corresponding thread picks up a
sup-problem from the load-balancer work-pool and completes its explo-
ration in its own work-pool. Moreover, Fig. 5 describes our tree-based
parallel B&B algorithm using this load-balancing strategy.

To minimize the communication cost, each thread whose work-pool
is empty chooses a sub-problem from the head of the load-balancer
work-pool since it has a large number of unprocessed vertices and
edges. The end of this parallel version is reached whenever the private
and load-balancer work-pools are both empty.

5.5.2. K-iterations parallel approaches (LB,)

The second way to ensure a fair workload among all parallel pro-
cesses is to combine both work-stealing and tree-based approaches
(WS_B&B and TB_B&B). Therefore, each parallel B&B instance has
access to two work-pools as shown in Fig. 6. A private local work-pool
owned by the process (master or workers) and one global work-pool
shared between all parallel processes. The idea here is that each parallel
process picks up a sub-problem from the shared work-pool and explores
it recursively in its own work-pool. When the number of performed
iterations reaches a certain limit denoted by k, the corresponding pro-
cess inserts all sub-problems from its work-pool into the global shared
work-pool. This process is repeated until the shared and private work-
pools are empty. In this way, we guarantee a fair workload distribution
between all parallel processes. As depicted in Fig. 6, the main idea here
is to allow the parallel processes to perform k-iterations at a time and
then merge their own local work-pool into one global shared work-
pool. To ensure a depth-first exploration of the search tree, all parallel
processes use a standard DFS strategy. In addition, the global shared
work-pool is sorted automatically after each insertion according to the
number of processed vertices. In other words, sub-problems with a
higher number of processed vertices are chosen first (at the head of
the list).

6. Performance evaluation

In this section, we investigate the ability of our proposed paral-
lel approaches and load-balancing strategies to efficiently reduce the
running time for optimally solving the GED problem. To this aim,
two sets of experiments are conducted using well-known datasets and
cost functions. The first one aims to find the best parameters for our
two parallel approaches and measures our proposed load-balancing
strategies’ impact on the execution time and the number of explored
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Table 1
Datasets information.
Dataset NB graphs mean #nodes mean degree min #nodes max #nodes
Alkane 150 8.9 1.8 1 10
Acyclic 185 8.2 1.8 3 11
PAH 94 20.7 20.4 10 28
MAO 68 18.4 2.1 11 27
Table 2
Cost Setting for vertex and edge edit operation.
Vertex Edge
Sub Del Ins Sub Del Ins
Setting 1 2 4 4 1 1 1
Setting 2 2 4 4 1 2 2
Setting 3 6 2 2 3 1 1

nodes. The second set of our experiments evaluates and compares the
performance of the different parallel methods in accelerating the time
needed to solve well-known datasets.

Computing Platform: We performed our experiments on a single
HPC compute node from the IBNBADIS cluster located at the CERIST
research center. This compute node contains two Intel Xeon processors
(E5-2650) with 8 CPU cores of 2 GHz speed each and 32 Go of memory,
running under Linux operating system. Our parallel code is written in
JAVA.

Datasets: We performed our experiments using two large datasets.
The first dataset contains PAH, MAO, Alkane, Acyclic, and GREC.

+ PAH, MAO, Alkane, and Acyclic are part of the GREYC’s Chem-
istry dataset, which contains several archives and links to var-
ious chemical databases of molecules. These datasets can be
obtained using the following link: https://brunl01.users.greyc.fr/
CHEMISTRY/.

GREC is a subset of the IAM graph database repository proposed
by Riesen K. and Bunke H. in [36]. This dataset can be obtained
using the following link: http://www.fki.inf.unibe.ch/databases/
iam-graph-database.

All datasets are in Graph exchange Language (GXL) format' and de-
fined as follows: The GREC dataset is decomposed into several subsets,
each one contains graphs that have the same size, groups of 5, 10, 15,
and 20 vertices. For the other remaining datasets, Table 1 summarizes
some important information about these datasets.

The second dataset is the TUDataset [37],> where we used the fol-

lowing dataset: benzene, MUTAG, AIDS, Aspirin, TRIANGLES, MSRC_21.

These datasets are transformed into GXL format.

Cost Function: The cost function represents the weighting of each
edit operation (substitution, deletion, or insertion) on both vertices and
edges. Therefore, the cost function affects the amount of the processing
time and the memory space needed by the B&B algorithm to solve
the GED problem optimally, i.e., the algorithm’s complexity differs
significantly by changing the cost of different edits operations. The
difference in complexity is explained by the fact that the search tree
generated varies according to the user costs, which implies different
optimal paths and, thus, different complexity. For this reason, it is es-
sential to use several cost settings. Three cost settings have been used in
our experiments to test the robustness of our parallel approaches. These
settings were used in the competition on graph matching organized
in 2016 (https://gdc2016.greyc.fr/#ged). Moreover, Table 2 describes
the used settings. Each setting favorites either substitution (Sub) or
deletion/insertion (Del/Ins) edit operations.

1 GXL is defined as an XML sub-language, which offers support for exchang-
ing instance graphs together with appropriate information in a uniform format
(http://www.gupro.de/GXL/).

2 TUDataset: https://chrsmrrs.github.io/datasets/
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Fig. 7. Variation of the execution time and speedup according to the number of
used threads for our work-stealing and tree-based parallel approaches using the three
cost-settings in Table 2.

6.1. Finding the best parameters
In this section, we aim to find the required number of parallel

threads that maximize the performance of our proposed parallel ap-
proaches. In addition, we will present in this section the results of our
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Fig. 8. Comparing the performance of our two proposed parallelization approaches for
each setting in Table 2.

two load-balancing strategies. For this reason, all experiments in this
section are performed using only two medium size graphs from the PAH
dataset.

Fig. 7 shows the variation of the execution time and speedup of our
two parallel B&B approaches using the cost settings in Table 2. The first
interesting observation from this figure is the positive impact of paral-
lelization in improving the complexity of the B&B algorithm. Indeed,
using twenty parallel threads, our two parallel approaches improved
the complexity by a factor of 27 x faster than the serial version of the
B&B algorithm executed under the same test configuration.

We can notice from Fig. 7 that the curves of our parallel B&B
approaches, for all settings, have the same behavior. In other words,
both parallel B&B approaches have two phases. A first phase where
increasing the number of parallel threads improves the running time.
i.e., Increasing the speedup. After reaching the threshold of twenty
parallel threads, a second phase begins where adding new parallel
threads does not affect much the execution time and, thus, the speedup.
This behavior is closely related to the number of computing cores
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Table 3
Comparison between the Work-stealing parallel B&B and the Tree-based parallel B&B
approaches.

Evaluation criteria Work-stealing parallel B&B ~ Tree-based parallel B&B

Memory Utilization Low High

Scalability Low Embarrassingly Parallel
Diversification Gain Low High

Load Balancing Problem  none Very high

available in our station, which is sixteen CPU cores. In more detail, the
number of parallel threads in the first phase is below the number of
CPU cores available, which explains the decrease in complexity. While
in the second phase, the number of parallel threads is greater than the
number of computing cores. Thereby, the system schedule sequentially
the additional work-load, which slows down the parallel approaches.

As indicated by the same figure, the best performance for both
parallel approaches is reached for a number of parallel threads equal
to twenty. This number represents the number of parallel threads
that fully exploit the computing resources of our workstation. For this
reason, and for all incoming experiments, we fixed the number of
parallel threads for all parallel B&B versions to twenty.

Fig. 8 shows, for all settings, a comparison between the performance
of the work-stealing parallel B&B and the performance of the tree-
based parallel B&B approaches when increasing the number of parallel
threads. We can notice from Fig. 8 that the complexity of both parallel
B&B approaches decreases when increasing the number of parallel
threads before reaching approximately the same results. However, the
slope of the decrease is not the same. Indeed, the curve of the work-
stealing parallel version decreases gradually, which induces a sharper
slope compared to the tree-based parallel version. The improvement
in this latter is made in two steps, the first step between four and
sixteen threads and a second step between twenty and forty threads.
The slope of the tree-based parallel version is not as sharp as the slope
of the work-stealing version. This can be explained by the efficient
improvement in the complexity of the tree-based version, even for a
low number of parallel threads. Indeed, Unlike the work-stealing ver-
sion, the tree-based version explores several regions of the search tree
simultaneously, which allows to take advantage of the diversification
gain. In other words, the tree-based parallel version has more chance to
encounter better solutions, improving the UB. Furthermore, this allows
to prune many branches in the search tree explored in the work-stealing
version, which explains the gain in complexity and the super-linear
speedup.

Table 3 shows a comparison between our two proposed parallel
B&B approaches to identify the strengths and the weaknesses of each
approach.

The exact GED problem is known in the literature to have compute-
bound and memory-bound limitations simultaneously. For this reason,
our first discussed criteria is memory usage in both approaches. Our
work-stealing parallel approach uses less memory space than the tree-
based parallel approach. Indeed, the work-stealing parallel approach
involves exploring only one search tree in depth using several threads,
which induces a fixed memory footprint that does not change much
when increasing the number of parallel threads. On the other hand,
unlike the work-stealing approach, the tree-based approach involves
the exploration of several search trees in parallel, which induces a
huge memory footprint that increases according to the number of used
parallel threads.

Scalability refers to the possibility of improving parallel algorithms’
performance when the number of parallel threads reaches hundreds.
Our work-stealing parallel approach does not perform well when in-
creasing the number of parallel threads to reach hundreds. This be-
havior is explained by the fact that all parallel threads operate on
a single search tree. The access to this latter, to insert or peek-up a
node, is done sequentially. Thereby, it induces a bottleneck effect on
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the performance. This explains why the complexity of this approach
increases when reaching 40 threads, as shown in Fig. 8 (setting 1 and
setting 3). Unlike the work-stealing approach, the tree-based parallel
B&B approach is embarrassingly parallel due to the low communication
and synchronization costs between the parallel threads since each
thread operates on its own search tree.

The diversification (gain from expanding the search) represents an
essential technique to tackle NP-hard optimization problems. More-
over, it represents an essential technique to consider, especially when
exploring a search tree, due to its intuitive parallel nature. On the
one hand, our work-stealing approach explores the search tree in one
direction (approximately the same as the sequential version but faster),
which induces a low diversification gain. On the other hand, our tree-
based approach simultaneously explores several parts (directions) of
the search tree, allowing a faster improvement of the upper bound.
It avoids the exploration of a huge number of branches explored in
serial and parallel work-stealing versions. This results in a super-linear
speedup since the explored parts of the search tree are not the same
between the serial and parallel tree-based versions. Moreover, the
huge difference in complexity in favor of our tree-based approach in
Fig. 8 (between 4 and 16 threads) results from the diversification gain.
When the number of parallel threads exceeds 16, another problem
that neutralizes the diversification gain occurs. This problem is called
load-balancing problem.

The load-balancing problems refer to the unfair distribution of the
work-load between parallel threads, inducing the idleness of some
threads and a long-running time for others. This is due mainly to
the imbalanced work in search tree nodes. Our work-stealing version
has no load-balancing problem since parallel threads operate on a
single shared work-pool. However, unlike the work-stealing version,
the performance of our tree-based approach is seriously influenced by
the load-balancing problem, especially for a large number of parallel
threads. This neutralizes the diversification gain as shown in Fig. 8.

6.1.1. Impact of our load balancing strategies

Two load-balancing strategies have been proposed to overcome
the load-balancing problem in the tree-based parallel B&B approach.
The first load-balancing strategy (LB;) uses the master process as a
load-balancer. i.e. Avoid the idleness of threads by giving to them
a read/write access to the load-balancer work-pool whenever their
own work-pools are empty. In comparison, the second load-balancing
strategy (L B,) merges all private work-pools into a global shared one
after each k iterations.

In the following, we will show the impact of each load balancing
strategy on the performance of the tree-based parallel B&B approach.

Fig. 9(a) shows the performance of the tree-based parallel B&B
approach, with and without load-balancing strategies, when increasing
the number of parallel threads. Similarly, Fig. 9(b) shows the variation
of the number of explored nodes by the main thread when increasing
the number of parallel threads. The first conclusion that can be made
from the figure is the positive and significant impact of our proposed
load-balancing strategies on the performance of the tree-based parallel
B&B approach. The improvement in the execution time is the result
of the fair work-load distribution between the parallel threads, which
avoids the idleness of threads and thus, maximizing the diversification
gain. Moreover, the curves of our two load-balancing strategies in
Fig. 9(b) confirm this theory and show a constant decrease in the
number of explored nodes by the master when increasing the number
of parallel threads. This is not the case with the standard tree-based
parallel version, especially for a large number of parallel threads in
which the number of explored nodes stays the same.

Fig. 10(a) shows the relative speedup of our tree-based parallel
B&B approach (with/without load-balancing strategies) compared to
our serial implementation of the B&B algorithm executed under the
same test configuration. Moreover, Fig. 10(b) shows the obtained im-
provement factor when adding our proposed load-balancing strategies
to the tree-based parallel B&B algorithm.
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Fig. 9. Variation of the execution time and mean explored nodes according to the
number of used threads.

Fig. 10 shows that the first load-balancing strategy improved the
performance of the tree-based parallel approach by a factor of 4x. The
second load-balancing strategy achieved even more significant perfor-
mance by reporting an improvement factor around 11 times faster.
By computing the relative speedup (Fig. 10(a)) against our serial B&B
version executed in the same test configuration, we can see that adding
load-balancing strategies to the tree-based parallel approach allowed
us to achieve a speedup around 124 times faster when using the first
load-balancing strategy, and 318 times faster when using our second
load-balancing strategy. The speedup reported in the figure shows the
huge gain of using parallelism to solve the GED problem. Indeed, by
using only 16 CPU cores, we have reported a speedup around 318
times faster due to the high impact of the diversification gain boosted
by the proposed load-balancing strategies. Indeed, exploring several
parts of the search tree simultaneously allows a faster improvement
of the upper bound. Thus, avoiding the exploration of a huge number
of branches explored in the serial version of the B&B algorithm. By
ensuring a fair work-load between the parallel processes, the impact
of the diversification gain is higher, which explains the super-linear
speedup.

6.2. Performance evaluation of our proposed approaches

In the following, we will focus mainly on the computation time
of the different proposed approaches and load-balancing strategies.
All approaches have twenty parallel threads and are tested using the
chosen graphs in Table 4. The idea behind selecting just some graphs is:
(1) Performing all combinations is not practical due to a large number
of graphs in each dataset. (2) To allow other researchers to fairly
compare theirs approaches against ours due to the huge lack in this
aspect in the literature. Table 4 contains fifteen combinations where
each one is identified by a codification (Column Cod.). For example,
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Table 4
Graphs combinations used to test our parallel B&B approaches.
Cod. G, G,
Aclll di-tert-butyl_peroxide.gxl 1,1-dimethoxyhexane.gxl
g Acyclic Acl12 1,1-diisopropoxyethane.gxl 2,4-dimethoxy-2-methylpentane.gxl
= Acl1.3 1,1-dipropoxyethane.gxl 1,4-diethoxybutane.gxl
Mal7_1 molecule33.gxl molecule18.gxl
Mao Mal7_2 molecule34.gxl molecule20.gxl
= Mal7_3 molecule36.gxl molecule21.gxl
o
E' Gr15_1 image11_24.gx1 image11_22.gx1
Grec Gr15.2 imagell_22.gxl image18_16.gxl
Grl5.3 image11_30.gxl imagel8_14.gxl
Gr20_1 imagell_42.gxl imagel1_50.gxl
Grec Gr20_2 imagell_46.gxl imagel1_50.gxl
5 Gr20_3 image5_45.gxl image5_50.gx1
‘% Pal8 1 triphenylene.gxl benzo[a]anthracene.gxl
PAH Pal8.2 naphthacene.gxl benzo[c]phenanthrene.gxl
Pal8_3 chrysene.gxl triphenylene.gxl
(a) Relative Speedup (Against our serial version). Table 5
Execution time of our proposed parallel B&B approaches and load-balancing strategies
using cost Setting 1.
318 Cod. Serial WSpss TBpyp TBpgp TBpgp
300 B&B LBl LB2
Aclll 58 6 6 2 2
200 % % Acyclic Acll2 15 1 2 0 0
3 = Acll3 7 0 1 0 0
w
124 Mal7_1 13444 908 600 78 26
100 Mao Mal7_2 12206 478 869 295 337
% Mal7_3 22197 746 2405 318 22
j="
28 é Grl51 19681 821 1422 433 2
0 Grec Grl52 344204 11035 12281 1352 490
20 Threads Grl53 344055 13744 12332 850 548
o Tree-based parallel B&B
Io Tree-based parallel B&B with load-balancing 1 G grjg‘; : : : : ff;‘
[]] Tree-based parallel B&B with load-balancing 2 ree e
5 Gr203 - - - - 3130
(b) Improvement factor against the tree-based parallel approach. 5 Palsl 6978 751 343 107 78
PAH Pal8 2 55877 2820 1918 492 107
15 Pal83 28584 3366 1272 115 138
11 Table 6
[ | 10 o Execution time of our proposed parallel B&B approaches and load-balancing strategies
3 using cost Setting 2.
a Cod. Serial WSpes TBgez TBuep TBpep
B&B LB1 LB2
4 3 Aclll 74 2 7 2 2
2 Acyclic Acl12 15 0 1 0 0
= Acl13 7 0 1 0 0
0 Mal7_1 14968 2177 1543 1892 185
20 Threads Mao Mal7 2 13756 1690 1476 601 330
Io Load-balancing 1 = Mal73 18610 1949 2778 345 46
. a
I Load-balancing2 5 Grl51 108547 3655 17499 1728 117
Grec Grl52 806310 15068 115674 24832 1774
Fig. 10. Improvement factor and relative speedup of our proposed load-balancing Grl53 806144 15035 116064 24724 2804
strategies using twenty threads. Gr201 - - - - 1851
Grec Gr202 - - - - 5090
5 Gr20.3 - - - - 79552
8
. . . . o
Acl1_1 denotes the combination of two graphs with eleven vertices ® Pal8 1l 6998 565 355 170 372
btained f he A lic dat ¢ i di-tert-butvl id 1 (G1 PAH Pal82 56021 1609 1994 625 26
obtaine rom the Cyclic dataset 1.e. di-tert-butylperoxide.gx ( ) Pal8 3 28601 3018 1311 230 168

and 1,1-dimethoxyhexane.gxl (G2). These combinations are divided
into small, medium, and large. The first set (small) contains three
combinations of graphs obtained from the Acyclic dataset. The second
set (medium) contains six combinations obtained from Mao and Grec
datasets. Finally, The last set (Large) contains also six combinations of
graphs obtained from Grec and PAH datasets.

Table 5, Table 6, and Table 7 show the performance, in terms of
execution time, of our proposed parallel B&B approaches and load-
balancing strategies using the three cost-settings in Table 2 and the
graph combinations in Table 4.

12

The first three columns from these tables report respectively the
dataset’s name and size, in-addition to the codification of the chosen
graphs. Column Serial B&B indicates the execution time of our sequen-
tial B&B algorithm under the same test configuration. Column W S
reports the results of our work-stealing parallel B&B approach using
twenty parallel threads. Column 7 By, p reports the results of our tree-
based parallel B&B approach using twenty parallel threads. Finally,
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(a) Increase in number of optimally solved combinations compared to serial approach.

26

50
40

g

30 &

g

23 £

i v
. ’

0

lo
lo
I

Work-stealing B&B
Tree-based parallel B&B with load-balancing 1
Tree-based parallel B&B with load-balancing 2

Fig. 11. Improvement percentage in the number of optimally solved combinations within one hour execution time when using our proposed parallel approaches.

Table 7
Execution time of our proposed parallel B&B approaches and load-balancing strategies
using cost Setting 3.

Cod. WSpsp  TBpgg TBpgp TBpgp
LB1 LB2
Acll’l 58 3 7 2 2
2 Acyclic Acll2 14 0 2 0 0
= Acl13 5 0 1 0 0
Mal7_1 47986 4029 5046 1892 25
Mao Mal7_2 40619 3478 4248 1064 2784
§ Mal7_3 10668 1014 2099 500 25
o
5' Grl5.1 408 28 70 20 20
Grec Grl52 3 3 3 3 3
Grl153 3 3 3 3 3
Gr20.1 - - - - 23
Grec Gr20.2 - - - - 12
5 Gr203 - - - - 97
°:‘; Pal81 6998 361 350 219 546
PAH Pal82 55992 3317 1994 560 59
Pal8.3 28589 1627 1309 288 109

Columns T Bgg p with LB1 and T Bgg p with LB2 report the results of
adding our two load-balancing strategies to the tree-based parallel B&B
approach.

The first observation from Tables 5, 6, and 7 is the ability of our
proposed approaches and load-balancing strategies to reduce the execu-
tion time of our serial B&B version efficiently. Indeed, this improvement
is noticed for all tested cost settings, even for the small-size test com-
binations. Moreover, the graph combinations Gr15_2 and Grl5_3 from
Tables 6 and 7, show the impact of the cost settings on the time needed
for optimally solving the GED problem. Indeed, the serial execution
time varies from hundreds of thousands to only a few hundred or even
less. For this reason, it is important to test the proposed approaches
under different cost settings. To compare the results of our proposed
approaches, it is interesting to observe the statewise dominance. This lat-
ter represents the simplest case of stochastic dominance [38,39], and it
is defined as follows: Approach A is statewise dominant over Approach
B if A gives at least as good as B for every tested benchmark, and a
strictly better results for at least one benchmark. In the following, we
will first compare the results of our two parallel approaches, and then
we will evaluate the impact of our proposed load-balancing strategies.
Table 5, Table 6, and Table 7 show that both work-stealing and tree-
based parallel B&B approaches are statewise dominant over the serial
B&B version. However, there is no dominance between the two parallel
approaches. For some test combinations, the work-stealing approach
is better and for others, the tree-based version is better. But globally,

13

(a) Speedup of our parallel approaches using MUTAG dataset.

80
o
60 3
b
a
2
40

20

24
[ ]
. 0

lo Work-stealing B&B
o Tree-based parallel B&B with load-balancing 1
I Tree-based parallel B&B with load-balancing 2

Fig. 12. The average speedup obtained by our parallel B&B approaches.

we can say that the work-stealing version is better since it outperforms
the results of the tree-based approach in 21 cases against 12 cases for
the tree-based version in all cost settings. When adding load-balancing
strategies to our tree-based approach, this latter becomes statewise
dominant over the work-stealing parallel approach.

Indeed, the unbalanced work-load between threads in the tree-based
version reduces enormously the diversification gain, which explains
why the work-stealing version was better. This also explains why the re-
sults of the tree-based parallel approach with load-balancing strategies
are much better compared to the basic version of the tree-based ap-
proach. If we compare the results of our two load-balancing strategies,
we cannot establish a dominance relation between the two strategies.
However, we can say that the results of our second load-balancing strat-
egy are mostly better than the first load-balancing strategy. In addition,
the tree-based parallel B&B using our second load-balancing strat-
egy is the only approach that reported optimal results for large Grec
combinations, which indicates the need for efficient load-balancing
strategies.

6.3. Performance results for TUdataset

Table 8 shows the mean edit distance obtained by our parallel
approaches during one hour execution time. The first two columns
show the dataset’s name and its average number of vertices. For each
dataset, we tested 57 graph combinations. Each approach is represented
by three columns indicating the mean edit distance using the three cost
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Table 8
Mean edit distance results of parallel approaches using TUDataset and the three settings in Table 1.
GED-mean 1 h Comb. WSgen TBpep LBl TBpgpL B2
Datasets avg_nodes ST1 ST2 ST3 ST1 ST2 ST3 ST1 ST2 ST3
Benzene 12 57 1.26 2.52 1.26 1.26 2.52 1.26 1.26 2.52 1.26
AIDS 15.7 57 32.68 32.89 39.78 31.52 40.42 39.05 30.78 39.10 39.15
MUTAG 17.93 57 26.26 33.89 23.73 2491 31.78 21.94 24.73 30.42 22.36
Triangles 20.85 57 13 26.84 13 11.73 24.10 12.36 11.94 22.21 12.78
Aspirin 21.00 57 48.42 97.89 75.36 13.57 27.15 13.47 14.15 28.21 14.63
MSRC_21 77.52 57 415.31 675.47 509.42 635.31 920.94 509.73 378.47 623.26 564.68
MSRC_21 TRIANGLES
1100 ag
1000 54
8 900 | g
2 0 ‘ g 28
3 \ 3 |
& 700 W Setting 1 = 23 W Setting
3 \ \ . 3 |
é 600 ‘ ‘ ‘ m Setting 2 5 18 M Setting
s 500 Setting 3 = I ‘ Setting
13
400 |
- m N : 1 n 1
Serial-B&B TB-B&B(LB1)  TB-B&B(LB2) Ws-B&B Serial-B&B TB-B&B(LB1)  TB-B&B(LB2) WS-B&B
Algorithms Algorithms
MUTAG Aspirin
45 120
100
© 40 [
S
g ‘ & 80
g 2
= ‘ W Setting 1 £ 80 W Setting
o ©
@ 30 ‘ . g = Setti
c M Setting 2 S 0 | Setting
g Setting 3 g Setting
. 1 1 . |
. , I mim BN |
Serial-B&B TB-B&B (LB1) TB-B&B (LB2) Ws-B&B Serial-B&B TB-B&B(LB1)  TB-B&B(LB2) WS-B&B
Algorithms Algorithms

Fig. 13. Mean edit distance of serial and parallel B&B approaches using four datasets (MSR_21, TRIANGLES,MUTAG, and Aspirin).

settings in Table 1. We limited the execution time for each combination
to one hour because each combination may take several days to finish
since our approaches are optimal. Thus, limiting the time allows us to
test many graph combinations.

The results obtained for the TUDataset confirm the results reported
earlier. The mean edit distance obtained by our TB approaches (LB1
and LB2) is better than that obtained by the WSy z version for all
the datasets and cost settings. As explained earlier, this is the result
of diversifying the search process in the TB approaches that allows the
explore different parts of the search tree simultaneously. Thus, more
chance to explore better paths and improve the edit distance. Moreover,
the TB approaches (LB1 and LB2) are similar in mean edit distance,
with slightly better results when using the k-level technique to ensure
fair work-load distribution.

Fig. 11 shows that our TB approaches increase the number of
optimally solved combinations by 27% compared to the serial B&B
version. On the other hand, the work-stealing version improved the
number of solved combinations by only 4%. Moreover, the tree-based
(LB1) approach was the only approach able to solve 23 over 57 graph
combinations in the Aspirin dataset.

Fig. 12 shows the average speedup obtained by our parallel B&B
approaches considering only the instances solved optimally by the
serial version in the MUTAG dataset. The speedup of our parallel
approaches for each instance varies between 5x and 250x. The best
performance is reached when using TBgg p with LB1 with an average
speedup of 93X, followed by the TByg p with LB2 with 24x and finally
WSpe g With 13x.

14

Fig. 13 shows the mean edit distance obtained by our serial and
parallel approaches in one hour execution time. The first observation
is the ability of parallel approaches to reduce the mean edit distance
compared to our serial B&B version. This is not always the case, as we
can see for Aspirin and MUTAG datasets in which the serial version has
better results than the WS version. Moreover, the tree-based approaches
show a significant improvement in reducing the mean edit distance for
all datasets and cost settings. The performance of the proposed parallel
approaches varies from one dataset to another. Therefore, there is no
strict superiority for one approach over the others, especially for the
two tree-based approaches.

7. Conclusion and perspectives

This work considers the parallelization of the B&B algorithm to
solve the Exact Graph Edit Distance problem referred to as Exact GED.
This problem measures the amount of dissimilarity between two graphs
by finding the best set of edit operations to transform one graph into
another. The GED is widely used in various applications, especially in
areas related to pattern recognition. However, the use of exact GED is
limited in practice due to its prohibitive complexity when dealing with
large graphs. To overcome this drawback, we proposed two efficient
shared-memory parallel B&B schemes. The first one is based on a work-
stealing strategy in which several B&B instances operate on the same
work-pool. The second one aims to build the B&B search tree in parallel.
Therefore, several B&B instances operate on their private work-pool.
Furthermore, we proposed two load-balancing strategies to avoid the
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idleness of parallel threads. Experiments on several reference datasets
showed the efficiency of our proposals in reducing the execution time
and exploiting the power of multi-core CPU processors.

It turns out that even when using parallelism, the running time
and space needed for solving the problem of exact GED is still very
high. For this reason, our future works will investigate using tree-based
approximate approaches to solve this challenging problem.
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