• français
    • English
  • français 
    • français
    • English
  • Ouvrir une session
  • CGU
  • -
  • About
  • -
  • Contact
  • -
  • Team
Voir le document 
  •   CERIST DL
  • Articles Scientifiques
  • Articles de Revues Internationales
  • Voir le document
  •   CERIST DL
  • Articles Scientifiques
  • Articles de Revues Internationales
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Parcourir

Tout DLCommunautés & CollectionsPar date de publicationAuteursTitresSujetsCette collectionPar date de publicationAuteursTitresSujets

Mon compte

Ouvrir une sessionS'inscrire

Semantic indexing of multimedia content using textual and visual information

Thumbnail
Voir/Ouvrir
IJAMC 5204 Amrane et al..pdf (379.5Ko)
Auteur(s) :
Amrane, Abdesalam
Mellah, Hakima
Amghar, Youssef
Aliradi, Rachid
Date :
2014
URI :
http://dl.cerist.dz/handle/CERIST/470
DOI :
10.1504/IJAMC.2014.060496
Résumé
The challenge in multimedia information retrieval remains in the indexing process, an active search area. There are three fundamental techniques for indexing multimedia content: those using textual information, and those using low-level information and those that combine different information extracted from multimedia. Each approach has its advantages and disadvantages as well to improve multimedia retrieval systems. The recent works are oriented towards multimodal approaches. In this paper we propose an approach that combines the surrounding text with the information extracted from the visual content of multimedia and represented in the same repository in order to allow querying multimedia content based on keywords or concepts. Each word contained in queries or in description of multimedia is disambiguated using the WordNet ontology in order to define its semantic concept. Support Vector Machines (SVMs) are used for image classification in one of the defined semantic concept based on SIFT (Scale Invariant Feature Transform) descriptors.

Mots clés:

multimedia retrieval; automatic annotation; semantic representation; multimodal image representation; SVM; SIFT; textual querying.

Source:

International Journal of Advanced Media and Communication (IJAMC)
, vol.5, no.2/3, pages:182-194

Éditeur / Etablissement:

Inderscience
Copyright : Inderscience
Collections
  • Articles de Revues Internationales [89]

Tous les documents dans CERIST DIGITAL LIBRARY sont protégés par copyright, avec tous droits réservés. copyright © 2013-2015  CERIST
Contactez-nous | Faire parvenir un commentaire
Powered by 
@mire NV
 

 


Tous les documents dans CERIST DIGITAL LIBRARY sont protégés par copyright, avec tous droits réservés. copyright © 2013-2015  CERIST
Contactez-nous | Faire parvenir un commentaire
Powered by 
@mire NV