Browsing by Author "Alanko, Jarno"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemA framework for space-efficient read clustering in metagenomic samples(BioMed Central, 2017-03-14) Alanko, Jarno; Cunial, Fabio; Belazzougui, Djamal; Mäkinen, VeliBackground: A metagenomic sample is a set of DNA fragments, randomly extracted from multiple cells in an environment, belonging to distinct, often unknown species. Unsupervised metagenomic clustering aims at partitioning a metagenomic sample into sets that approximate taxonomic units, without using reference genomes. Since samples are large and steadily growing, space-efficient clustering algorithms are strongly needed. Results: We design and implement a space-efficient algorithmic framework that solves a number of core primitives in unsupervised metagenomic clustering using just the bidirectional Burrows-Wheeler index and a union-find data structure on the set of reads. When run on a sample of total length n, with m reads of maximum length ℓ each, on an alphabet of total size σ, our algorithms take O(n(t+logσ)) time and just 2n+o(n)+O(max{ℓ σlogn,K logm}) bits of space in addition to the index and to the union-find data structure, where K is a measure of the redundancy of the sample and t is the query time of the union-find data structure. Conclusions: Our experimental results show that our algorithms are practical, they can exploit multiple cores by a parallel traversal of the suffix-link tree, and they are competitive both in space and in time with the state of the art.
- ItemA framework for space-efficient variable-order Markov models(Oxford University Press, 2019-11-15) Cunial, Fabio; Alanko, Jarno; Belazzougui, DjamalMotivation: Markov models with contexts of variable length are widely used in bioinformatics for representing sets of sequences with similar biological properties. When models contain many long contexts, existing implementations are either unable to handle genome-scale training datasets within typical memory budgets, or they are optimized for specific model variants and are thus inflexible. Results: We provide practical, versatile representations of variable-order Markov models and of interpolated Markov models, that support a large number of context-selection criteria, scoring functions, probability smoothing methods, and interpolations, and that take up to four times less space than previous implementations based on the suffix array, regardless of the number and length of contexts, and up to ten times less space than previous trie-based representations, or more, while matching the size of related, state-of-the-art data structures from Natural Language Processing. We describe how to further compress our indexes to a quantity related to the redundancy of the training data, saving up to 90% of their space on very repetitive datasets, and making them become up to sixty times smaller than previous implementations based on the suffix array. Finally, we show how to exploit constraints on the length and frequency of contexts to further shrink our compressed indexes to half of their size or more, achieving data structures that are a hundred times smaller than previous implementations based on the suffix array, or more. This allows variable-order Markov models to be used with bigger datasets and with longer contexts on the same hardware, thus possibly enabling new applications. Availability and implementation: https://github.com/jnalanko/VOMM