Browsing by Author "Challal , Yacine"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemPrivacy-preserving deep learning for pervasive health monitoring: a study of environment requirements and existing solutions adequacy(Elsevier, 2022-03) Boulemtafes, Amine; Derhab, Abdelouahid; Challal , YacineIn recent years, deep learning in healthcare applications has attracted considerable attention from research community. They are deployed on powerful cloud infrastructures to process big health data. However, privacy issue arises when sensitive data are offloaded to the remote cloud. In this paper, we focus on pervasive health monitoring applications that allow anywhere and anytime monitoring of patients, such as heart diseases diagnosis, sleep apnea detection, and more recently, early detection of Covid-19. As pervasive health monitoring applications generally operate on constrained client-side environment, it is important to take into consideration these constraints when designing privacy-preserving solutions. This paper aims therefore to review the adequacy of existing privacy-preserving solutions for deep learning in pervasive health monitoring environment. To this end, we identify the privacy-preserving learning scenarios and their corresponding tasks and requirements. Furthermore, we define the evaluation criteria of the reviewed solutions, we discuss them, and highlight open issues for future research.
- ItemPrivacy-preserving remote deep-learning-based inference under constrained client-side environment(Springer, 2023) Boulemtafes, Amine; Derhab, Abdelouahid; Ait Ali Braham, Nassim; Challal , YacineRemote deep learning paradigm raises important privacy concerns related to clients sensitive data and deep learning models. However, dealing with such concerns may come at the expense of more client-side overhead, which does not fit applications relying on constrained environments. In this paper, we propose a privacy-preserving solution for deep-learning-based inference, which ensures effectiveness and privacy, while meeting efficiency requirements of constrained client-side environments. The solution adopts the non-colluding two-server architecture, which prevents accuracy loss as it avoids using approximation of activation functions, and copes with constrained client-side due to low overhead cost. The solution also ensures privacy by leveraging two reversible perturbation techniques in combination with paillier homomorphic encryption scheme. Client-side overhead evaluation compared to the conventional homomorphic encryption approach, achieves up to more than two thousands times improvement in terms of execution time, and up to more than thirty times improvement in terms of the transmitted data size.