Browsing by Author "El Baz, Didier"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemFast parallel algorithms for finding elementary circuits of a directed graph: a GPU-based approach(Springer Science+Business Media, 2023-03) Benachour, Amira; Yahiaoui, Saïd; El Baz, Didier; Nouali‑Taboudjemat, Nadia; Kheddouci, HamamacheCircuits in a graph are interesting structures and identifying them is of an important relevance for many applications. However, enumerating circuits is known to be a difficult problem, since their number can grow exponentially. In this paper, we propose fast parallel approaches for enumerating elementary circuits of directed graphs based on graphics processing unit (GPU). Our algorithms are based on a massive exploration of the graph in a breadth-first search strategy. Algorithm V-FEC explores the graph starting from different vertices simultaneously. To further reduce the search space, we present T-FEC, another algorithm that uses triplets as an initial set to start exploring. To the best of our knowledge, those are the first parallel GPU-based algorithms for finding all circuits of a given graph. In addition, they find circuits of a given length and circuits with a specific vertex or edge. The evaluation results show that the proposed approaches achieve up to 190x speed-up over Johnson’s algorithm, one of the most efficient sequential algorithms for finding circuits.
- ItemGPU parallel B&B for the Blocking job shop scheduling problem.(CERIST, 2016-02-22) Dabah, Adel; Bendjoudi, Ahcène; Ait Zai, Abdelhakim; El Baz, DidierBranch and bound algorithms (B&B) are well known techniques for solving optimally combinatorial optimization problems. Nevertheless, these algorithms remain inefficient when dealing with large instances. This paper deals with the blocking job shop scheduling (BJSS), which is a version of classical job shop scheduling with no intermediate buffer between machines. This problem is an NP-hard problem and its exact resolution using the sequential approach is impractical. We propose in this paper a GPU-based parallelization in which a two level scheme is used. The first level is a node-based parallelization in which the bounding process is faster because it is calculated in parallel using several threads organized in one GPU block. To fully occupy the GPU, we propose a second level of parallelization which is a generalization of the first level. Therefore, for each iteration several search tree nodes are evaluated on the GPU using several thread-blocks. The obtained results, using the well-known Taillard instances, confirm the efficiency of the proposed approach. Also, the results show that our approach is 65 times faster than an optimized sequential B&B version.
- ItemGPU-based two level parallel B&B for the Blocking job shop scheduling problem.(IEEE, 2016-05-23) Adel, Dabah; Bendjoudi, Ahcène; El Baz, Didier; Abdelhakim, Ait ZaiBranch and bound algorithms (B&B) are well known techniques for solving optimally combinatorial optimization problems. Nevertheless, these algorithms remain inefficient when dealing with large instances. This paper deals with the blocking job shop scheduling (BJSS), which is a version of classical job shop scheduling with no intermediate buffer between machines. This problem is an NP-hard problem and its exact resolution using the sequential approach is impractical. We propose in this paper a GPU-based parallelization in which a two level scheme is used. The first level is a node-based parallelization in which the bounding process is faster because it is calculated in parallel using several threads organized in one GPU block. To fully occupy the GPU, we propose a second level of parallelization which is a generalization of the first level. Therefore, for each iteration several search tree nodes are evaluated on the GPU using several thread-blocks. The obtained results, using the well-known Taillard instances, confirm the efficiency of the proposed approach. Also, the results show that our approach is 65 times faster than an optimized sequential B&B version.
- ItemMulti and Many-core Parallel B&B approaches for the Blocking Job Shop Scheduling Problem(2016-07) Dabah, Adel; Bendjoudi, Ahcène; Ait Zai, Abdelhakim; El Baz, Didier; Nouali-Taboudjemat, NadiaIn this paper, we propose three approaches to accelerate the B&B execution time using Multi and Many-core systems to solve the NP-hard Blocking Job Shop Scheduling problem (BJSS). The first approach is based on Master/Worker paradigm where the workers independently explore the branches sent by the master. The second approach is a node-based parallelization that does not change the design of the B&B algorithm, except that the bounding process is faster since it is calculated in parallel using several threads organized in one GPU block. The third approach is a Multi-Core CPU/GPU hybridization that benefits from the power of both the CPU-cores and the GPU at the same time. This hybridization is based on concurrent kernels execution provided by Nvidia Multi process Service (MPS) i.e. each host process (Master or Worker) launches his own kernel to accelerate the bounding process on GPU. The obtained results using Taillard instances confirm the efficiency of our proposals. The first two approaches are respectively three and eighteen times faster compared to the sequential version. The results of the hybrid approach show a relative speedup over ninety times as compared to the sequential approach and therefore prove the advantage of using both the CPU-cores and the GPU at the same time.