Repository logo
Communities & Collections
All of DSpace
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kaporis, Alexis C."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Random input helps searching predecessors
    (CEUR-WS.org, 2018-06-17) Belazzougui, Djamal; Kaporis, Alexis C.; Spirakis, Paul G.
    A data structure problem consists of the finite sets: D of data, Q of queries, A of query answers, associated with a function f : D ×Q → A. The data structure of file X is “static” (“dynamic”) if we “do not” (“do”) require quick updates as X changes. An important goal is to compactly encode a file X ∈ D, such that for each query y ∈ Q, function f(X, y) requires the minimum time to compute an answer in A. This goal is trivial if the size of D is large, since for each query y ∈ Q, it was shown that f(X, y) requires O(1) time for the most important queries in the literature. Hence, this goal becomes interesting to study as a trade off between the “storage space” and the “query time”, both measured as functions of the file size n = |X|. The ideal solution would be to use linear O(n) = O(|X|) space, while retaining a constant O(1) query time. However, if f(X, y) computes the static predecessor search (find largest x ∈ X : x ≤ y), then Ajtai [Ajt88] proved a negative result. By using just n O(1) = |X| O(1) data space, then it is not possible to evaluate f(X, y) in O(1) time ∀y ∈ Q. The proof exhibited a bad distribution of data D, such that ∃y ∗ ∈ Q (a “difficult” query y ∗ ), that f(X, y∗ ) requires ω(1) time. Essentially [Ajt88] is an existential result, resolving the worst case scenario. But, [Ajt88] left open the question: do we typically, that is, with high probability (w.h.p.) 1 encounter such “difficult” queries y ∈ Q, when assuming reasonable distributions with respect to (w.r.t.) queries and data? Below we make reasonable assumptions w.r.t. the distribution of the queries y ∈ Q, as well as w.r.t. the distribution of data X ∈ D. In two interesting scenarios studied in the literature, we resolve the typical (w.h.p.) query time.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback