Browsing by Author "Mekahlia, Fatma Zohra"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemFast distributed multi-hop relative time synchronization protocol and estimators for wireless sensor networks(Elsevier, 2013-11) Djenouri, Djamel; Merabtine, Nassima; Mekahlia, Fatma Zohra; Doudou, MessaoudThe challenging problem of time synchronization in wireless sensor networks is considered in this paper, where a new distributed protocol is proposed for both local and multi-hop synchronization. The receiver-to-receiver paradigm is used, which has the advantage of reducing the time-critical-path and thus improving the accuracy compared to common sender-to-receiver protocols. The protocol is fully distributed and does not rely on any fixed reference. The role of the reference is divided amongst all nodes, while timestamp exchange is integrated with synchronization signals (beacons). This enables fast acquisition of timestamps that are used as samples to estimate relative synchronization parameters. An appropriate model is used to derive maximum likelihood estimators (MLE) and the Cramer-Rao lower bounds (CRLB) for both the offset-only, and the joint offset/skew estimation. The model permits to directly estimating relative parameters without using or referring to a reference’ clock. The proposed protocol is extended to multi-hop environment, where local synchronization is performed proactively and the resulted estimates are transferred to the intermediate/end-point nodes on-demand, i.e. as soon as a multi-hop communication that needs synchronization is initiated. On-demand synchronization is targeted for multi-hop synchronization instead of the always-on global synchronization model, which avoids periodic and continuous propagation of synchronization signals beyond a single-hop. Extension of local MLE estimators is proposed to derive relative multi-hop estimators. The protocol is compared by simulation to some state-of-the-art protocols, and results show much faster convergence of the proposed protocol. The difference has been on the order of more than twice compared to CS-MNS, more than ten times compared to RBS, and more than twenty times compared to TPSN. Results also show scalability of the proposed protocol concerning the multi-hop synchronization. The error does not exceed few microseconds for as much as 10 hops in R4Syn, while in CS-MNS, and TPSN, it reaches few tens of microseconds. Implementation and tests of the protocol on real sensor motes confirm microsecond level precision even in multi-hop scenarios, and high stability (long lifetime) of the skew/offset model.
- ItemFault-Tolerant Implementation of a Distributed MLE-based Time Synchronization Protocol for Wireless Sensor Networks(CERIST, 2012) Djenouri, Djamel; Doudou, Messaoud; Merabtine, Nassima; Mekahlia, Fatma ZohraThis paper describes the implementation and evaluation of R4Syn protocol on MICAz platform and TinyOS operating system. The contribution is two folds. First, the implementation uses thorough maximum-likelihood estimators (MLE) in the joint offset/skew model, while all similar MLE-based estimators are merely evaluated with theoretical and numerical analysis thus far, and empirical solutions use simple computation estimators, such as offset-only models, or linear regression for skew estimation. Difficulties that has been encountered and overcome are reported in this paper. The second contribution is to consider fault-tolerance, an aspect that has been completely abstracted in previous works. The implementation assures correct behavior despite nodes failure or packet loss, as demonstrated by the experiments. Experimental results also demonstrate microsecond-level precision and long-term validity of the estimators in the joint skew/offset model.
- ItemFault-Tolerant Implementation of a Distributed MLE-based Time Synchronization Protocol for Wireless Sensor Networks(IEEE Communications Society, 2013-04) Djenouri, Djamel; Merabtine, Nassima; Mekahlia, Fatma Zohra; Doudou, MessaoudThis paper describes the implementation and evaluation of R4Syn protocol on MICAz platform and TinyOS operating system. The contribution is two folds. First, the implementation uses thorough maximum-likelihood estimators (MLE) in the joint offset/skew model, while all similar MLEbased estimators are merely evaluated with theoretical and numerical analysis thus far, and empirical solutions use simple computation estimators, such as offset-only models, or linear regression for skew estimation. Difficulties that has been encountered and overcome are reported in this paper. The second contribution is to consider fault-tolerance, an aspect that has been completely abstracted in previous works. The implementation assures correct behavior despite nodes failure or packet loss, as demonstrated by the experiments. Experimental results also demonstrate microsecond-level precision and long-term validity of the estimators in the joint skew/offset model.