Browsing by Author "Oufaida, Houda"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemMinimum redundancy and maximum relevance for single and multi-document Arabic text summarization(Elsevier, 2014-12) Oufaida, Houda; Nouali, Omar; Blache, PhilippeAutomatic text summarization aims to produce summaries for one or more texts using machine techniques. In this paper, we propose a novel statistical summarization system for Arabic texts. Our system uses a clustering algorithm and an adapted discriminant analysis method: mRMR (minimum redundancy and maximum relevance) to score terms. Through mRMR analysis, terms are ranked according to their discriminant and coverage power. Second, we propose a novel sentence extraction algorithm which selects sentences with top ranked terms and maximum diversity. Our system uses minimal language-dependant processing: sentence splitting, tokenization and root extraction. Experimental results on EASC and TAC 2011 MultiLingual datasets showed that our proposed approach is competitive to the state of the art systems.
- ItemUsing Clustering and Modified Classification algorithm without a learning corpus for automatic text summarization(2013-02-05) Aries, Abdelkrime; Oufaida, Houda; Nouali, OmarIn this paper we describe a modified classification method destined for extractive summarization purpose. The classification in this method doesn’t need a learning corpus; it uses the input text to do that. First, we cluster the document sentences to exploit the diversity of topics, then we use a learning algorithm (here we used Naive Bayes) on each cluster considering it as a class. After obtaining the classification model, we calculate the score of a sentence in each class, using a scoring model derived from classification algorithm. These scores are used, then, to reorder the sentences and extract the first ones as the output summary. We conducted some experiments using a corpus of scientific papers, and comparing our system to another system which is UNIS system. Also, we experiment the impact of clustering threshold tuning, on the resulted summary, as well as the impact of adding more features to the classifier. We found that this method is interesting, and gives good performance, and the addition of new features (which is simple using this method) can improve summary’s accuracy.