International Journal Papers

Permanent URI for this collectionhttp://dl.cerist.dz/handle/CERIST/17

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Item
    REFIACC: Reliable, efficient, fair and interference-aware congestion control protocol for wireless sensor networks
    (Elsevier, 2017) Kafi, Mohamed Amine; Ben-Othman, Jalel; Ouadjaout, Abdelraouf; Bagaa, Miloud
    The recent wireless sensor network applications are resource greedy in terms of throughput and net- work reliability. However, the wireless shared medium leads to links interferences in addition to wireless losses due to the harsh environment. The effect of these two points translates on differences in links bandwidth capacities, lack of reliability and throughput degradation. In this study, we tackle the prob- lem of throughput maximization by proposing an efficient congestion control-based schedule algorithm, dubbed REFIACC (Reliable, Efficient, Fair and Interference-Aware Congestion Control) protocol. REFIACC prevents the interferences and ensures a high fairness of bandwidth utilization among sensor nodes by scheduling the communications. The congestion and the interference in inter and intra paths hot spots are mitigated through tacking into account the dissimilarity between links’ capacities at the scheduling process. Linear programming is used to reach optimum utilization efficiency of the maximum available bandwidth. REFIACC has been evaluated by simulation and compared with two pertinent works. The re- sults show that the proposed solution outperforms the others in terms of throughput and reception ratio (more than 80%) and can scale for large networks.
  • Thumbnail Image
    Item
    Performance analysis and evaluation of REFIACC using queuing networks
    (Elsevier, 2017-02) Kafi, Mohamed Amine; Ben Othman, Jalel; Mokdad, Lynda; Badache, Nadjib
    Wireless Sensor Networks (WSN) utilisation is characterised by its dense deployment in order to fulfil the monitoring tasks. This density of communication leads to interference and congestion. In a previous work, a schedule scheme dubbed REFIACC (Reliable, Efficient, Fair and Interference Aware Congestion Control), that takes into account interferences and different links capacities in order to avoid packet loss due congestion, was proposed. REFIACC idea was validated using comparative simulations. In this study, REFIACC scheduling scheme was modelled using Markov chains. The modelling concerns queue length evolution and global system throughput. Different hypothesis details for queue length monitoring, according to application motivation, have led to many variants of models. The evaluation of the model using MATLAB has shown its effectiveness concerning packet reception ratio and reception overhead.
  • Thumbnail Image
    Item
    REFIACC: Reliable, Efficient, Fair and Interference-Aware Congestion Control Protocol for Wireless Sensor Networks
    (Elsevier, 2016-05-28) Kafi, Mohamed Amine; Ben Othman, Jalel; Ouadjaout, Abdelraouf; Bagaa, Miloud; Badache, Nadjib
    The recent wireless sensor network applications are resource greedy in terms of throughput and network reliability. However, the wireless shared medium leads to links interferences in addition to wireless losses due to the harsh environment. The effect of these two points translates on differences in links bandwidth capacities, lack of reliability and throughput degradation. In this study, we tackle the problem of throughput maximization by proposing an efficient congestion control-based schedule algorithm, dubbed REFIACC (Reliable, Efficient, Fair and Interference-Aware Congestion Control) protocol. REFIACC prevents the interferences and ensures a high fairness of bandwidth utilization among sensor nodes by scheduling the communications. The congestion and the interference in inter and intra paths hot spots are mitigated through tacking into account the dissimilarity between links' capacities at the scheduling process. Linear programming is used to reach optimum utilization efficiency of the maximum available bandwidth. REFIACC has been evaluated by simulation and compared with two pertinent works. The results show that the proposed solution outperforms the others in terms of throughput and reception ratio (more than 80%) and can scale for large networks.
  • Thumbnail Image
    Item
    CCS_WHMS: A Congestion Control Scheme for Wearable Health Management System
    (Springer Link, 2015-10-21) Kafi, Mohamed Amine; Ben Othman, Jalel; Bagaa, Miloud; Badache, Nadjib
    Wearable computing is becoming a more and more attracting field in the last years thanks to the miniaturisation of electronic devices. Wearable healthcare monitoring systems (WHMS) as an important client of wearable computing technology has gained a lot. Indeed, the wearable sensors and their surrounding healthcare applications bring a lot of benefits to patients, elderly people and medical staff, so facilitating their daily life quality. But from a research point of view, there is still work to accomplish in order to overcome the gap between hardware and software parts. In this paper, we target the problem of congestion control when all these healthcare sensed data have to reach the destination in a reliable manner that avoids repetitive transmission which wastes precious energy or leads to loss of important information in emergency cases, too. We propose a congestion control scheme CCS_WHMS that ensures efficient and fair data delivery while used in the body wearable system part or in the multi-hop inter bodies wearable ones to get the destination. As the congestion detection paradigm is very important in the control process, we do experimental tests to compare between state of the art congestion detection methods, using MICAz motes, in order to choose the appropriate one for our scheme.
  • Thumbnail Image
    Item
    CCS_WHMS: A Congestion Control Scheme for Wearable Health Management System
    (Springer US, 2015-12) Kafi, Mohamed Amine; Ben Othman, Jalel; Bagaa, Miloud; Badache, Nadjib
    Wearable computing is becoming a more and more attracting field in the last years thanks to the miniaturisation of electronic devices. Wearable healthcare monitoring systems (WHMS) as an important client of wearable computing technology has gained a lot. Indeed, the wearable sensors and their surrounding healthcare applications bring a lot of benefits to patients, elderly people and medical staff, so facilitating their daily life quality. But from a research point of view, there is still work to accomplish in order to overcome the gap between hardware and software parts. In this paper, we target the problem of congestion control when all these healthcare sensed data have to reach the destination in a reliable manner that avoids repetitive transmission which wastes precious energy or leads to loss of important information in emergency cases, too. We propose a congestion control scheme CCS_WHMS that ensures efficient and fair data delivery while used in the body wearable system part or in the multi-hop inter bodies wearable ones to get the destination. As the congestion detection paradigm is very important in the control process, we do experimental tests to compare between state of the art congestion detection methods, using MICAz motes, in order to choose the appropriate one for our scheme.
  • Thumbnail Image
    Item
    Congestion Control Protocols in Wireless Sensor Networks: A Survey
    (2014-03-05) Kafi, Mohamed Amine; Djenouri, Djamel; Ben Othman, Jalel; Badache, Nadjib
    The performance of wireless sensor networks (WSN) is affected by the lossy communication medium, application diversity, dense deployment, limited processing power and storage capacity, frequent topology change. All these limitations provide significant and unique design challenges to data transport control in wireless sensor networks. An effective transport protocol should consider reliable message delivery, energy-efficiency, quality of service and congestion control. The latter is vital for achieving a high throughput and a long network lifetime. Despite the huge number of protocols proposed in the literature, congestion control in WSN remains challenging. A review and taxonomy of the state-of-the-art protocols from the literature up to 2013 is provided in this paper. First, depending on the control policy, the protocols are divided into resource control vs. traffic control. Traffic control protocols are either reactive or preventive (avoiding). Reactive solutions are classified following the reaction scale, while preventive solutions are split up into buffer limitation vs. interference control. Resource control protocols are classified according to the type of resource to be tuned.