International Journal Papers

Permanent URI for this collectionhttp://dl.cerist.dz/handle/CERIST/17

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Efficient On-Demand Multi-Node Charging Techniques for Wireless Sensor Networks
    (Elsevier, 2016-10-01) Khelladi, Lyes; Djenouri, Djamel; Rossi, Michele; Badache, Nadjib
    This paper deals with wireless charging in sensor networks and explores efficient policies to perform simultaneous multi-node power transfer through a mobile charger (MC).The proposed solution, called On-demand Multi-node Charging (OMC), features an original threshold-based tour launching (TTL) strategy, using request grouping, and a path planning algorithm based on minimizing the number of stopping points in the charging tour. Contrary to existing solutions, which focus on shortening the charging delays, OMC groups incoming charging requests and optimizes the charging tour and the mobile charger energy consumption. Although slightly increasing the waiting time before nodes are charged, this allows taking advantage of multiple simultaneous charges and also reduces node failures. At the tour planning level, a new modeling approach is used. It leverages simultaneous energy transfer to multiple nodes by maximizing the number of sensors that are charged at each stop. Given its NP-hardness, tour planning is approximated through a clique partitioning problem, which is solved using a lightweight heuristic approach. The proposed schemes are evaluated in offline and on-demand scenarios and compared against relevant state-of-the-art protocols. The results in the offline scenario show that the path planning strategy reduces the number of stops and the energy consumed by the mobile charger, compared to existing offline solutions. This is with further reduction in time complexity, due to the simple heuristics that are used. The results in the on-demand scenario confirm the effectiveness of the path planning strategy. More importantly, they show the impact of path planning, TTL and multi-node charging on the efficiency of handling the requests, in a way that reduces node failures and the mobile charger energy expenditure.
  • Thumbnail Image
    Item
    Security Issues of Mobile Ad hoc and Sensor Networks
    (IEEE Communications Society, 2005-12) Djenouri, Djamel; Khelladi, Lyes; Badache, Nadjib
    Security in mobile ad hoc networks is difficult to achieve, notably because of the vulnerability of wireless links, the limited physical protection of nodes, the dynamically changing topology, the absence of a certification authority, and the lack of a centralized monitoring or management point. Earlier studies on mobile ad hoc networks (MANETs) aimed at proposing protocols for some fundamental problems, such as routing, and tried to cope with the challenges imposed by the new environment. These protocols, however, fully trust all nodes and do not consider the security aspect. They are consequently vulnerable to attacks and misbehavior. More recent studies focused on security problems in MANETs, and proposed mechanisms to secure protocols and applications. This article surveys these studies. It presents and discusses several security problems along with the currently proposed solutions (as of July 2005) at different network layers of MANETs. Security issues involved in this article include routing and data forwarding, medium access, key management and intrusion detection systems (IDSs). This survey also includes an overview of security in a particular type of MANET, namely, wireless sensor networks (WSNs).