International Journal Papers
Permanent URI for this collectionhttp://dl.cerist.dz/handle/CERIST/17
Browse
2 results
Search Results
Item Bidirectional Variable-Order de Bruijn Graphs(World Scientific Publishing, 2018-12) Belazzougui, Djamal; Gagie, Travis; Mäkinen, Veli; Previtali, Marco; Puglisi, Simon J.Compressed suffix trees and bidirectional FM-indexes can store a set of strings and support queries that let us explore the set of substrings they contain, adding and deleting characters on both the left and right, but they can use much more space than a de Bruijn graph for the strings. Bowe et al.’s BWT-based de Bruijn graph representation (Proc. Workshop on Algorithms for Bioinformatics, pp. 225–235, 2012) can be made bidirectional as well, at the cost of increasing its space usage by a small constant, but it fixes the length of the substrings. Boucher et al. (Proc. Data Compression Conference, pp. 383–392, 2015) generalized Bowe et al.’s representation to support queries about variable-length substrings, but at the cost of bidirectionality. In this paper we show how to make Boucher et al.’s variable-order implementation of de Bruijn graphs bidirectional.Item A framework for space-efficient read clustering in metagenomic samples(BioMed Central, 2017-03-14) Alanko, Jarno; Cunial, Fabio; Belazzougui, Djamal; Mäkinen, VeliBackground: A metagenomic sample is a set of DNA fragments, randomly extracted from multiple cells in an environment, belonging to distinct, often unknown species. Unsupervised metagenomic clustering aims at partitioning a metagenomic sample into sets that approximate taxonomic units, without using reference genomes. Since samples are large and steadily growing, space-efficient clustering algorithms are strongly needed. Results: We design and implement a space-efficient algorithmic framework that solves a number of core primitives in unsupervised metagenomic clustering using just the bidirectional Burrows-Wheeler index and a union-find data structure on the set of reads. When run on a sample of total length n, with m reads of maximum length ℓ each, on an alphabet of total size σ, our algorithms take O(n(t+logσ)) time and just 2n+o(n)+O(max{ℓ σlogn,K logm}) bits of space in addition to the index and to the union-find data structure, where K is a measure of the redundancy of the sample and t is the query time of the union-find data structure. Conclusions: Our experimental results show that our algorithms are practical, they can exploit multiple cores by a parallel traversal of the suffix-link tree, and they are competitive both in space and in time with the state of the art.