Academic & Scientific Articles

Permanent URI for this communityhttp://dl.cerist.dz/handle/CERIST/3

Browse

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    Item
    Delay-efficient MAC protocol with traffic differentiation and run-time parameter adaptation for energy-constrained wireless sensor networks
    (Springer US, 2015-06) Doudou, Messaoud; Djenouri, Djamel; Barcelo-Ordinas, Jose M.; Badache, Nadjib
    This paper presents an asynchronous cascading wake-up MAC protocol for heterogeneous traffic gathering in low-power wireless sensor networks. It jointly considers energy/delay optimization and switches between two modes, according to the traffic type and delay requirements. The first mode is high duty cycle, where energy is traded-off for a reduced latency in presence of realtime traffic (RT). The second mode is low duty cycle, which is used for non-realtime traffic and gives more priority to energy saving. The proposed protocol, DuoMAC, has many features. First, it quietly adjusts the wake-up of a node according to (1) its parent’s wake-up time and, (2) its estimated load. Second, it incorporates a service differentiation through an improved contention window adaptation to meet delay requirements. A comprehensive analysis is provided in the paper to investigate the effectiveness of the proposed protocol in comparison with some state-of-the-art energy-delay efficient duty-cycled MAC protocols, namely DMAC, LL-MAC, and Diff-MAC. The network lifetime and the maximum end-to-end packet latency are adequately modeled, and numerically analyzed. The results show that LL-MAC has the best performance in terms of energy saving, while DuoMAC outperforms all the protocols in terms of delay reduction. To balance the delay/energy objectives, a runtime parameter adaptation mechanism has been integrated to DuoMAC. The mechanism relies on a constrained optimization problem with energy minimization in the objective function, constrained by the delay required for RT. The proposed protocol has been implemented on real motes using MicaZ and TinyOS. Experimental results show that the protocol clearly outperforms LL-MAC in terms of latency reduction, and more importantly, that the runtime parameter adaptation provides additional reduction of the latency while further decreasing the energy cost.
  • Thumbnail Image
    Item
    Game Theoretical Approach for Energy-Delay Balancing in Distributed Duty-Cycled MAC Protocols of Wireless Networks
    (ACM, 2014-07-15) Doudou, Messaoud; M. Barcelo-Ordinas, Jose; Djenouri, Djamel; Garcia-Vidal, Jorge; Badache, Nadjib
    Optimizing energy consumption and end-to-end (e2e) packet delay in energy constrained distributed wireless networks is a conflicting multi-objective optimization problem. This paper investigates this trade-off from a game-theoretic perspective, where the two optimization objectives are considered as virtual game players that attempt to optimize their utility values. The cost model of each player is mapped through a generalized optimization framework onto protocol specific MAC parameters. From the optimization framework, a cooperative game is defined in which the Nash Bargaining solution assures the balance between energy consumption and e2e packet delay. For illustration, this formulation is applied to three state-of-the-art wireless sensor network MAC protocols; X-MAC, DMAC, and LMAC as representatives of preamble sampling, slotted contention-based, and frame-based MAC categories, respectively. The paper shows the effectiveness of such framework in optimizing protocol parameters that achieve a fair energy-delay performance trade-off under the application requirements in terms of initial energy budget and maximum e2e packet delay. The proposed framework is scalable with the increase in the number of nodes, as the players represent the optimization metrics instead of nodes.
  • Thumbnail Image
    Item
    Game Theoretical Approach for Energy-Delay Balancing in Distributed Duty-Cycled MAC Protocols of Wireless Networks
    (CERIST, 2014-04-24) Doudou, Messaoud; M. Barcelo-Ordinas, Jose; Djenouri, Djamel; Garcia-Vidal, Jorge; Badache, Nadjib
    Optimizing energy consumption and end-to-end (e2e) packet delay in energy constrained distributed wireless networks is a conflicting multi-objective optimization problem. This paper investigates this trade-off from a game-theoretic perspective, where the two optimization objectives are considered as virtual game players that attempt to optimize their utility values. The cost model of each player is mapped through a generalized optimization framework onto protocol specific MAC parameters. From the optimization framework, a cooperative game is defined in which the Nash Bargaining solution assures the balance between energy consumption and e2e packet delay. For illustration, this formulation is applied to three state-of-the-art wireless sensor network MAC protocols; X-MAC, DMAC, and LMAC as representatives of preamble sampling, slotted contention-based, and frame-based MAC categories, respectively. The paper shows the effectiveness of such framework in optimizing protocol parameters that achieve a fair energy-delay performance trade-off under the application requirements in terms of initial energy budget and maximum e2e packet delay. The proposed framework is scalable with the increase in the number of nodes, as the players represent the optimization metrics instead of nodes.
  • Thumbnail Image
    Item
    Duo-MAC: Energy and Time Constrained Data Delivery MAC Protocol in Wireless Sensor Networks
    (2013-07-01) Doudou, Messaoud; Mohammad, Alaei; Djenouri, Djamel; M. Barcelo-Ordinas, Jose; Badache, Nadjib
    We present Duo-MAC, an asynchronous cascading wake-up scheduled MAC protocol for heterogeneous traffic forwarding in low-power wireless networks. Duo-MAC deals with energy-delay minimization problem and copes with transmission latency encountered by Today’s duty-cycled protocols when forwarding heterogeneous traffic types. It switches, according to the energy and delay requirements, between Low Duty cycle (LDC) and High Duty Cycle (HDC) operating modes, and it quietly adjusts the wake-up schedule of a node according to (i) its parent’s wake-up time and (ii) its estimated load, using an effective real-time signal processing linear traffic estimator. As a second contribution, Duo-MAC, proposes a service differentiation through an improved contention window adaptation algorithm to meet delay requirements of heterogeneous traffic classes. Duo- MAC’s efficiency stems from balancing between the two traffic award operation modes. Implementation and experimentation of Duo-MAC on a MicaZ mote platform reveals that the protocol outperforms other state-of-the-art MAC protocols from the energy-delay minimization perspective.
  • Thumbnail Image
    Item
    Slotted Contention-Based Energy-Efficient MAC Protocols in Delay-Sensitive
    (CERIST, 2012) Doudou, Messaoud; Badache, Nadjib; Djenouri, Djamel
    This paper considers slotted duty-cycled medium access control (MAC) protocols, where sensor nodes periodically and synchronously alternate their operations between active and sleep modes to save energy. In order to transmit data from one node to another, both nodes must be in active mode. The synchronous feature makes these protocols more appropriate for delay-sensitive applications compared to asynchronous protocols. With asynchronous protocols, additional delay is needed for the sender to meet the receiver's active period. This is eliminated with synchronous approaches where nodes sleep and wake up all together. Moreover, contention-based feature makes the protocols --considered in this paper-- conceptually distributed and more dynamic compared to TDMA-based protocols. Duty cycling allows obtaining significant energy saving vs. full duty cycle (sleepless) random access MAC protocols. However, it may result in significant latency. Forwarding a packet over multiple hops often requires multiple operational cycles (sleep latency), where nodes have to wait for the next cycle to forward data at each hop. Timeliness issues of slotted contention-based WSN MAC protocols is deal t with in this paper, where a comprehensive review and taxonomy of state-of-the-art synchronous MAC protocols is provided. The main contribution is to study and classify the protocols from the delay-efficiency perspective.
  • Thumbnail Image
    Item
    Synchronous Contention-Based MAC Protocols for Delay-Sensitive Wireless Sensor Networks: A Review and Taxonomy
    (2013-04-06) Doudou, Messaoud; Djenouri, Djamel; Badache, Nadjib; Bouabdallah, Abdelmadjid
    Duty cycling allows obtaining significant energy saving compared to full duty cycle (sleepless) random access MAC protocols. However, it may result in significant latency. In slotted duty-cycled medium access control (MAC) protocols, sensor nodes periodically and synchronously alternate their operations between active and sleep modes. The sleep mode allows a sensor node to completely turn off its radio and save energy. In order to transmit data from one node to another, both nodes must be in active mode. The synchronous feature makes the protocols more appropriate for delay-sensitive applications compared to asynchronous protocols. The latter involve additional delay for the sender to meet the receiver's active period, which is eliminated with synchronous approach where nodes sleep and wake up all together. Despite the possible increase of contention by grouping active periods, the delay due to packets retransmissions after collisions is less significant compared to the waiting time of asynchronous protocols. Furthermore, contention-based feature makes the protocol conceptually distributed and more dynamic compared to TDMA-based. This manuscript deals with timeliness issues of slotted contention-based WSN MAC protocols. It provides a comprehensive review and taxonomy of state-of-the-art synchronous MAC protocols. The performance objective considered in the proposed taxonomy is the latency, in the context of energy-limited WSN, where energy is considered as a constraint for the MAC protocol that yields the need of duty-cycling the radio. The main contribution is to study and classify these protocols from the delay efficiency perspective. The protocols are divided into two main categories: static schedule and adaptive schedule. Adaptive schedule are split up into four subclasses: adaptive grouped schedule, adaptive repeated schedule, staggered schedule, and reservation schedule. Several state-of-the-art protocols are described following the proposed classification, with comprehensive discussions and comparisons with respect to their latency.
  • Thumbnail Image
    Item
    Slotted Contention-Based Energy-Efficient MAC Protocols in Delay-Sensitive Wireless Sensor Networks
    (2012-07-01) Doudou, Messaoud; Djenouri, Djamel; Badache, Nadjib; Bouabdallah, Abdelmadjid
    This paper considers slotted duty-cycled medium access control (MAC) protocols, where sensor nodes periodically and synchronously alternate their operations between active and sleep modes to save energy. Communications can occur only when nodes are in active mode. The synchronous feature makes these protocols more appropriate for delay-sensitive applications than asynchronous protocols. With asynchronous protocols, additional delay is needed for the sender to meet the receiver's active period. This is eliminated with synchronous approaches, where nodes sleep and wake up all together. Moreover, the contention-based feature makes the protocols --considered in this paper-- conceptually distributed and more dynamic compared to TDMA protocols. Duty cycling allows obtaining significant energy saving vs. full duty cycle (sleepless) protocols. However, it may result in significant latency. Forwarding a packet over multiple hops often requires multiple operational cycles (sleep latency), i.e. nodes have to wait for the next cycle to forward data at each hop. Timeliness issues of slotted contention-based MAC protocols are dealt with in this paper, where a comprehensive review and taxonomy is provided. The main contribution is to study and classify the protocols from the delay-efficiency perspective.