Academic & Scientific Articles

Permanent URI for this communityhttp://dl.cerist.dz/handle/CERIST/3

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Privacy-preserving remote deep-learning-based inference under constrained client-side environment
    (Springer, 2023) Boulemtafes, Amine; Derhab, Abdelouahid; Ait Ali Braham, Nassim; Challal , Yacine
    Remote deep learning paradigm raises important privacy concerns related to clients sensitive data and deep learning models. However, dealing with such concerns may come at the expense of more client-side overhead, which does not fit applications relying on constrained environments. In this paper, we propose a privacy-preserving solution for deep-learning-based inference, which ensures effectiveness and privacy, while meeting efficiency requirements of constrained client-side environments. The solution adopts the non-colluding two-server architecture, which prevents accuracy loss as it avoids using approximation of activation functions, and copes with constrained client-side due to low overhead cost. The solution also ensures privacy by leveraging two reversible perturbation techniques in combination with paillier homomorphic encryption scheme. Client-side overhead evaluation compared to the conventional homomorphic encryption approach, achieves up to more than two thousands times improvement in terms of execution time, and up to more than thirty times improvement in terms of the transmitted data size.
  • Thumbnail Image
    Item
    Privacy-preserving deep learning for pervasive health monitoring: a study of environment requirements and existing solutions adequacy
    (Elsevier, 2022-03) Boulemtafes, Amine; Derhab, Abdelouahid; Challal , Yacine
    In recent years, deep learning in healthcare applications has attracted considerable attention from research community. They are deployed on powerful cloud infrastructures to process big health data. However, privacy issue arises when sensitive data are offloaded to the remote cloud. In this paper, we focus on pervasive health monitoring applications that allow anywhere and anytime monitoring of patients, such as heart diseases diagnosis, sleep apnea detection, and more recently, early detection of Covid-19. As pervasive health monitoring applications generally operate on constrained client-side environment, it is important to take into consideration these constraints when designing privacy-preserving solutions. This paper aims therefore to review the adequacy of existing privacy-preserving solutions for deep learning in pervasive health monitoring environment. To this end, we identify the privacy-preserving learning scenarios and their corresponding tasks and requirements. Furthermore, we define the evaluation criteria of the reviewed solutions, we discuss them, and highlight open issues for future research.
  • Thumbnail Image
    Item
    Deep learning in pervasive health monitoring, design goals, applications, and architectures: An overview and a brief synthesis
    (Elsevier, 2021-11) Boulemtafes, Amine; Khemissa, Hamza; Derki, Mohamed Saddek; Amira, Abdelouahab; Djedjig, Nabil
    The continuous growth of an aging population in some countries, and patients with chronic conditions needs the development of efficient solutions for healthcare. Pervasive Health Monitoring (PHM) is an important pervasive computing application that has the potential to provide patients with a high-quality medical service and enable quick-response alerting of critical conditions. To that end, PHM enables continuous and ubiquitous monitoring of patients' health and wellbeing using Internet of Things (IoT) technologies, such as wearables and ambient sensors. In recent years, deep learning (DL) has attracted a growing interest from the research community to improve PHM applications. In this paper, we discuss the state-of-the-art of DL-based PHM, through identifying, (1) the main PHM applications where DL is successful, (2) design goals and objectives of using DL in PHM, and (3) design notes including DL architectures and data preprocessing. Finally, main advantages, limitations and challenges of the adoption of DL in PHM are discussed.
  • Thumbnail Image
    Item
    Investigating Security and Privacy Concerns in Deep-Learning-based Pervasive Health Monitoring Architectures
    (IEEE, 2023-11) Boulemtafes, Amine; Amira, Abdelouahab; Derki, Mohamed Saddek; Hadjar, Samir
    Pervasive Health Monitoring (PHM) uses sensors and wearable devices and data analytics for real-time health monitoring. It enables early detection and personalized care interventions. This technology has the potential to revolutionize healthcare by improving proactive and preventive care.Besides, Deep learning (DL) based PHM is even more promising as it improves the discovery of complex patterns and correlations. This leads to precise health monitoring and personalized care, enhances diagnostics, and ultimately improves patient outcomes in the field of healthcare.However, privacy and security considerations must be addressed for successful implementation. This paper investigates the security and privacy concerns in Pervasive Health Monitoring architectures. It discusses through an illustrative DL-based PHM architecture the potential threats and attacks during the inference and training phases, and identifies key security and privacy issues. It also gives insights on countermeasures and technological solutions that can address security and privacy concerns in PHM architectures.