Academic & Scientific Articles

Permanent URI for this communityhttp://dl.cerist.dz/handle/CERIST/3

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Delay-efficient MAC protocol with traffic differentiation and run-time parameter adaptation for energy-constrained wireless sensor networks
    (Springer US, 2015-06) Doudou, Messaoud; Djenouri, Djamel; Barcelo-Ordinas, Jose M.; Badache, Nadjib
    This paper presents an asynchronous cascading wake-up MAC protocol for heterogeneous traffic gathering in low-power wireless sensor networks. It jointly considers energy/delay optimization and switches between two modes, according to the traffic type and delay requirements. The first mode is high duty cycle, where energy is traded-off for a reduced latency in presence of realtime traffic (RT). The second mode is low duty cycle, which is used for non-realtime traffic and gives more priority to energy saving. The proposed protocol, DuoMAC, has many features. First, it quietly adjusts the wake-up of a node according to (1) its parent’s wake-up time and, (2) its estimated load. Second, it incorporates a service differentiation through an improved contention window adaptation to meet delay requirements. A comprehensive analysis is provided in the paper to investigate the effectiveness of the proposed protocol in comparison with some state-of-the-art energy-delay efficient duty-cycled MAC protocols, namely DMAC, LL-MAC, and Diff-MAC. The network lifetime and the maximum end-to-end packet latency are adequately modeled, and numerically analyzed. The results show that LL-MAC has the best performance in terms of energy saving, while DuoMAC outperforms all the protocols in terms of delay reduction. To balance the delay/energy objectives, a runtime parameter adaptation mechanism has been integrated to DuoMAC. The mechanism relies on a constrained optimization problem with energy minimization in the objective function, constrained by the delay required for RT. The proposed protocol has been implemented on real motes using MicaZ and TinyOS. Experimental results show that the protocol clearly outperforms LL-MAC in terms of latency reduction, and more importantly, that the runtime parameter adaptation provides additional reduction of the latency while further decreasing the energy cost.
  • Thumbnail Image
    Item
    Survey on Latency Issues of Asynchronous MAC Protocols in Delay-Sensitive Wireless Sensor Networks
    (CERIST, 2012) Doudou, Messaoud; Badache, Nadjib; Djenouri, Djamel
    Energy-efficiency is the main concern in most Wireless Sensor Network (WSN) applications. For this purpose, current WSN MAC (Medium Access Control) protocols use duty-cycling schemes, where they consciously switch a node’s radio between active and sleep modes. However, a node needs to be aware of (or at least use some mechanism to meet) its neighbors’ sleep/active schedules, since messages cannot be exchanged unless both the transmitter and the receiver are awake. Asynchronous duty-cycling schemes have the advantage over synchronous ones to eliminating the need of clock synchronization, and to be conceptually distributed and more dynamic. However, the communicating nodes are prone to spend more time waiting for the active period of each other, which inevitably influences the one-hop delay, and consequently the cumulative end-to-end delay. This paper reviews current asynchronous WSN MAC protocols. Its main contribution is to study these protocols from the delay efficiency perspective, and to investigate on their latency. The asynchronous protocols are divided into six categories: static wakeup preamble, adaptive wake-up preamble, collaborative schedule setting, collisions resolution, receiver-initiated, and anticipation based. Several state-of-the-art protocols are described following the proposed taxonomy, with comprehensive discussions and comparisons with respect to their latency.