Academic & Scientific Articles

Permanent URI for this communityhttp://dl.cerist.dz/handle/CERIST/3

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Item
    REFIACC: Reliable, efficient, fair and interference-aware congestion control protocol for wireless sensor networks
    (Elsevier, 2017) Kafi, Mohamed Amine; Ben-Othman, Jalel; Ouadjaout, Abdelraouf; Bagaa, Miloud
    The recent wireless sensor network applications are resource greedy in terms of throughput and net- work reliability. However, the wireless shared medium leads to links interferences in addition to wireless losses due to the harsh environment. The effect of these two points translates on differences in links bandwidth capacities, lack of reliability and throughput degradation. In this study, we tackle the prob- lem of throughput maximization by proposing an efficient congestion control-based schedule algorithm, dubbed REFIACC (Reliable, Efficient, Fair and Interference-Aware Congestion Control) protocol. REFIACC prevents the interferences and ensures a high fairness of bandwidth utilization among sensor nodes by scheduling the communications. The congestion and the interference in inter and intra paths hot spots are mitigated through tacking into account the dissimilarity between links’ capacities at the scheduling process. Linear programming is used to reach optimum utilization efficiency of the maximum available bandwidth. REFIACC has been evaluated by simulation and compared with two pertinent works. The re- sults show that the proposed solution outperforms the others in terms of throughput and reception ratio (more than 80%) and can scale for large networks.
  • Thumbnail Image
    Item
    CCS_WHMS: A Congestion Control Scheme for Wearable Health Management System
    (Springer Link, 2015-10-21) Kafi, Mohamed Amine; Ben Othman, Jalel; Bagaa, Miloud; Badache, Nadjib
    Wearable computing is becoming a more and more attracting field in the last years thanks to the miniaturisation of electronic devices. Wearable healthcare monitoring systems (WHMS) as an important client of wearable computing technology has gained a lot. Indeed, the wearable sensors and their surrounding healthcare applications bring a lot of benefits to patients, elderly people and medical staff, so facilitating their daily life quality. But from a research point of view, there is still work to accomplish in order to overcome the gap between hardware and software parts. In this paper, we target the problem of congestion control when all these healthcare sensed data have to reach the destination in a reliable manner that avoids repetitive transmission which wastes precious energy or leads to loss of important information in emergency cases, too. We propose a congestion control scheme CCS_WHMS that ensures efficient and fair data delivery while used in the body wearable system part or in the multi-hop inter bodies wearable ones to get the destination. As the congestion detection paradigm is very important in the control process, we do experimental tests to compare between state of the art congestion detection methods, using MICAz motes, in order to choose the appropriate one for our scheme.
  • Thumbnail Image
    Item
    CCS_WHMS: A Congestion Control Scheme for Wearable Health Management System
    (Springer US, 2015-12) Kafi, Mohamed Amine; Ben Othman, Jalel; Bagaa, Miloud; Badache, Nadjib
    Wearable computing is becoming a more and more attracting field in the last years thanks to the miniaturisation of electronic devices. Wearable healthcare monitoring systems (WHMS) as an important client of wearable computing technology has gained a lot. Indeed, the wearable sensors and their surrounding healthcare applications bring a lot of benefits to patients, elderly people and medical staff, so facilitating their daily life quality. But from a research point of view, there is still work to accomplish in order to overcome the gap between hardware and software parts. In this paper, we target the problem of congestion control when all these healthcare sensed data have to reach the destination in a reliable manner that avoids repetitive transmission which wastes precious energy or leads to loss of important information in emergency cases, too. We propose a congestion control scheme CCS_WHMS that ensures efficient and fair data delivery while used in the body wearable system part or in the multi-hop inter bodies wearable ones to get the destination. As the congestion detection paradigm is very important in the control process, we do experimental tests to compare between state of the art congestion detection methods, using MICAz motes, in order to choose the appropriate one for our scheme.
  • Thumbnail Image
    Item
    Congestion Detection Strategies in Wireless Sensor Networks: A Comparative Study with Testbed Experiments
    (Elsevier, 2014) Kafi, Mohamed Amine; Djenouri, Djamel; Ben Othman, Jalel; Ouadjaout, Abdelraouf; Badache, Nadjib
    Event based applications of Wireless Sensor Networks (WSNs) are prone to traffic congestion, where unpredicted event detection yields simultaneous generation of traffic at spatially co-related nodes, and its propagation towards the sink. This results in loss of information and waste energy. Early congestion detection is thus of high importance in such WSN applications to avoid the propagation of such a problem and to reduce its consequences. Different detection metrics are used in the congestion control literature. However, a comparative study that investigates the different metrics in real sensor motes environment is missing. This paper focuses on this issue and compares some detection metrics in a testbed network with MICAz motes. Results show the effectiveness of each method in different scenarios and concludes that the combination of buffer length and channel load constitute the better candidate for early and fictive detection.
  • Thumbnail Image
    Item
    MTCP: a new transport protocol for wireless mesh networks
    (CERIST, 2011-01) Kafi, Mohamed Amine
    Throughput is the main concern in Wireless Mesh Networks (WMNs). The standard congestion control mechanism of TCP[7] is not able to handle the special properties of a shared wireless multi-hop channel well. Given that the unreliable wireless links and congestion are likely to be the source of throughput degradation in the network, reliable transport protocol conception dealing with wireless links properties can significantly improve the performance of such networks. This paper presents a novel transport protocol called MTCP, which covers these needs. Simulation results show that MTCP outperform TCP and its ad-hoc wireless variants in terms of reliability and congestion control.
  • Item
    A Novel transport protocol for wireless mesh networks
    (Journal of Networking Technology, 2011-04-10) Kafi, Mohamed Amine; Tandjaoui, Djamel
    Throughput is the main concern in Wireless Mesh Networks (WMNs). The standard congestion control mechanism of TCP[7] is not able to handle the special properties of a shared wireless multi-hop channel well. Given that the unreliable wireless links and congestion are likely to be the source of throughput degradation in the network, reliable transport protocol conception dealing with wireless links properties can significantly improve the performance of such networks. This paper presents a novel transport protocol called MTCP, which covers these needs. Simulation results show that MTCP outperform TCP and its ad-hoc wireless variants in terms of reliability and congestion control.