Academic & Scientific Articles
Permanent URI for this communityhttp://dl.cerist.dz/handle/CERIST/3
Browse
2 results
Search Results
Item Energy-Delay Constrained Minimal Relay Placement in Low Duty-Cycled Sensor Networks Under Anycast Forwarding(CERIST, 2016-06) Doudou, Messaoud; M. Barcelo-Ordinas, Jose; Garcia-Vidal, JorgeA constrained relay placement problem satisfying application requirements in terms of network lifetime and end-to-end (e2e) delay in Wireless Sensor Networks (WSN) is investigated in this paper. The network and the traffic are adequately modeled considering uniform node deployment and low data rate periodic traffic generation. An optimization problem is defined to obtain the minimum number of relays to be deployed, at each level of the network, in order to fulfil network duty-cycle and e2e delay constraints under anycast forwarding based on the wake-up period parameter of the duty-cycle MAC protocol. Since the optimization problem is non-convex, an alternative and efficient algorithm for relay node placement called EDC-RP (Energy-Delay Constrained Relay Placement) is introduced. The comparison of the proposed node deployment strategy with state-of-the-art relay placement methods demonstrates the gain of the heuristic in terms of deployment cost (number of relays) over other solutions while fulfilling the application constraints.Item Duo-MAC: Energy and Time Constrained Data Delivery MAC Protocol in Wireless Sensor Networks(2013-07-01) Doudou, Messaoud; Mohammad, Alaei; Djenouri, Djamel; M. Barcelo-Ordinas, Jose; Badache, NadjibWe present Duo-MAC, an asynchronous cascading wake-up scheduled MAC protocol for heterogeneous traffic forwarding in low-power wireless networks. Duo-MAC deals with energy-delay minimization problem and copes with transmission latency encountered by Today’s duty-cycled protocols when forwarding heterogeneous traffic types. It switches, according to the energy and delay requirements, between Low Duty cycle (LDC) and High Duty Cycle (HDC) operating modes, and it quietly adjusts the wake-up schedule of a node according to (i) its parent’s wake-up time and (ii) its estimated load, using an effective real-time signal processing linear traffic estimator. As a second contribution, Duo-MAC, proposes a service differentiation through an improved contention window adaptation algorithm to meet delay requirements of heterogeneous traffic classes. Duo- MAC’s efficiency stems from balancing between the two traffic award operation modes. Implementation and experimentation of Duo-MAC on a MicaZ mote platform reveals that the protocol outperforms other state-of-the-art MAC protocols from the energy-delay minimization perspective.