Academic & Scientific Articles
Permanent URI for this communityhttp://dl.cerist.dz/handle/CERIST/3
Browse
2 results
Search Results
Item REFIACC: Reliable, efficient, fair and interference-aware congestion control protocol for wireless sensor networks(Elsevier, 2017) Kafi, Mohamed Amine; Ben-Othman, Jalel; Ouadjaout, Abdelraouf; Bagaa, MiloudThe recent wireless sensor network applications are resource greedy in terms of throughput and net- work reliability. However, the wireless shared medium leads to links interferences in addition to wireless losses due to the harsh environment. The effect of these two points translates on differences in links bandwidth capacities, lack of reliability and throughput degradation. In this study, we tackle the prob- lem of throughput maximization by proposing an efficient congestion control-based schedule algorithm, dubbed REFIACC (Reliable, Efficient, Fair and Interference-Aware Congestion Control) protocol. REFIACC prevents the interferences and ensures a high fairness of bandwidth utilization among sensor nodes by scheduling the communications. The congestion and the interference in inter and intra paths hot spots are mitigated through tacking into account the dissimilarity between links’ capacities at the scheduling process. Linear programming is used to reach optimum utilization efficiency of the maximum available bandwidth. REFIACC has been evaluated by simulation and compared with two pertinent works. The re- sults show that the proposed solution outperforms the others in terms of throughput and reception ratio (more than 80%) and can scale for large networks.Item Congestion Detection Strategies in Wireless Sensor Networks: A Comparative Study with Testbed Experiments(Elsevier, 2014) Kafi, Mohamed Amine; Djenouri, Djamel; Ben Othman, Jalel; Ouadjaout, Abdelraouf; Badache, NadjibEvent based applications of Wireless Sensor Networks (WSNs) are prone to traffic congestion, where unpredicted event detection yields simultaneous generation of traffic at spatially co-related nodes, and its propagation towards the sink. This results in loss of information and waste energy. Early congestion detection is thus of high importance in such WSN applications to avoid the propagation of such a problem and to reduce its consequences. Different detection metrics are used in the congestion control literature. However, a comparative study that investigates the different metrics in real sensor motes environment is missing. This paper focuses on this issue and compares some detection metrics in a testbed network with MICAz motes. Results show the effectiveness of each method in different scenarios and concludes that the combination of buffer length and channel load constitute the better candidate for early and fictive detection.