Academic & Scientific Articles

Permanent URI for this communityhttp://dl.cerist.dz/handle/CERIST/3

Browse

Search Results

Now showing 1 - 10 of 24
  • Thumbnail Image
    Item
    REFIACC: Reliable, efficient, fair and interference-aware congestion control protocol for wireless sensor networks
    (Elsevier, 2017) Kafi, Mohamed Amine; Ben-Othman, Jalel; Ouadjaout, Abdelraouf; Bagaa, Miloud
    The recent wireless sensor network applications are resource greedy in terms of throughput and net- work reliability. However, the wireless shared medium leads to links interferences in addition to wireless losses due to the harsh environment. The effect of these two points translates on differences in links bandwidth capacities, lack of reliability and throughput degradation. In this study, we tackle the prob- lem of throughput maximization by proposing an efficient congestion control-based schedule algorithm, dubbed REFIACC (Reliable, Efficient, Fair and Interference-Aware Congestion Control) protocol. REFIACC prevents the interferences and ensures a high fairness of bandwidth utilization among sensor nodes by scheduling the communications. The congestion and the interference in inter and intra paths hot spots are mitigated through tacking into account the dissimilarity between links’ capacities at the scheduling process. Linear programming is used to reach optimum utilization efficiency of the maximum available bandwidth. REFIACC has been evaluated by simulation and compared with two pertinent works. The re- sults show that the proposed solution outperforms the others in terms of throughput and reception ratio (more than 80%) and can scale for large networks.
  • Thumbnail Image
    Item
    SMART: Secure Multi-pAths Routing for wireless sensor neTworks
    (IEEE, 2014-06-22) Lasla, Noureddine; Derhab, Abdelouahid; Ouadjaout, Abdelraouf; Bagaa, Miloud; Challal, Yacine
    In this paper, we propose a novel secure routing protocol named Secure Multi-pAths Routing for wireless sensor neTworks (SMART) as well as its underlying key management scheme named Extended Twohop Keys Establishment (ETKE). The proposed framework keeps consistent routing topology by protecting the hop count information from being forged. It also ensures a fast detection of inconsistent routing information without referring to the sink node. We analyze the security of the proposed scheme as well as its resilience probability against the forged hop count attack. We have demonstrated through simulations that SMART outperforms a comparative solution in literature, i.e., SeRINS, in terms of energy consumption
  • Thumbnail Image
    Item
    Congestion Detection Strategies in Wireless Sensor Networks: A Comparative Study with Testbed Experiments
    (Elsevier, 2014-09) Kafi, Mohamed Amine; Djenouri, Djamel; Ouadjaout, Abdelraouf; Badache, Nadjib
    Event based applications of Wireless Sensor Networks (WSNs) are prone to traffic congestion, where unpredicted event detection yields simultaneous generation of traffic at spatially co-related nodes, and its propagation towards the sink. This results in loss of information and waste energy. Early congestion detection is thus of high importance in such WSN applications to avoid the propagation of such a problem and to reduce its consequences. Different detection metrics are used in the congestion control literature. However, a comparative study that investigates the different metrics in real sensor motes environment is missing. This paper focuses on this issue and compares some detection metrics in a testbed network with MICAz motes. Results show the effectiveness of each method in different scenarios and concludes that the combination of buffer length and channel load constitute the better candidate for early and fictive detection.
  • Thumbnail Image
    Item
    Interference-aware Congestion Control Protocol for Wireless Sensor Networks
    (Elsevier, 2014-09) Kafi, Mohamed Amine; Djenouri, Djamel; Ben Othman, Jalel; Ouadjaout, Abdelraouf; Bagaa, Miloud; Lasla, Noureddine; Badache, Nadjib
    This paper deals with congestion and interference control in wireless sensor networks (WSN), which is essential for improving the throughput and saving the scarce energy in networks where nodes have different capacities and traffic patterns. A scheme called IACC (Interference-Aware Congestion Control) is proposed. It allows maximizing link capacity utilization for each node by controlling congestion and interference. This is achieved through fair maximum rate control of interfering nodes in inter and intra paths of hot spots. The proposed protocol has been evaluated by simulation, where the results rival the effectiveness of our scheme in terms of energy saving and throughput. In particular, the results demonstrate the protocol scalability and considerable reduction of packet loss that allow to achieve as high packet delivery ratio as 80% for large networks.
  • Thumbnail Image
    Item
    SEDAN: Secure and Efficient protocol for Data Aggregation in wireless sensor Networks
    (IEEE, 2007-10-15) Bagaa, Miloud; Lasla, Noureddine; Ouadjaout, Abdelraouf; Challal, Yacine
    —Energy is a scarce resource in Wireless Sensor Networks. Some studies show that more than 70% of energy is consumed in data transmission. Since most of the time, the sensed information is redundant due to geographically collocated sensors, most of this energy can be saved through data aggregation. Furthermore, data aggregation improves bandwidth usage. Unfortunately, while aggregation eliminates redundancy, it makes data integrity verification more complicated since the received data is unique. In this paper, we present a new protocol that provides secure aggregation for wireless sensor networks. Our protocol is based on a two hops verification mechanism of data integrity. Our solution is essentially different from existing solutions in that it does not require referring to the base station for verifying and detecting faulty aggregated readings, thus providing a totally distributed scheme to guarantee data integrity. We carried out simulations using TinyOS environment. Simulation results show that the proposed protocol yields significant savings in energy consumption while preserving data integrity.
  • Thumbnail Image
    Item
    Poster Abstract: Static Analysis of Device Drivers in TinyOS
    (ACM/IEEE, 2014-04-15) Ouadjaout, Abdelraouf; Lasla, Noureddine; Bagaa, Miloud; Badache, Nadjib
    In this paper, we present SADA, a static analysis tool to verify device drivers for TinyOS applications. Its broad goal is to certify that the execution paths of the application complies with a given hardware specification. SADA can handle a broad spectrum of hardware specifications, ranging from simple assertions about the values of configuration registers, to complex behaviors of possibly several connected hardware components. The hardware specification is expressed in BIP, a language for describing easily complex interacting discrete components. The analysis of the joint behavior of the application and the hardware specification is then performed using the theory of Abstract Interpretation. We have done a set of experiments on some TinyOS applications. Encouraging results are obtained that confirm the effectiveness of our approach.
  • Thumbnail Image
    Item
    REFIACC: Reliable, Efficient, Fair and Interference-Aware Congestion Control Protocol for Wireless Sensor Networks
    (Elsevier, 2016-05-28) Kafi, Mohamed Amine; Ben Othman, Jalel; Ouadjaout, Abdelraouf; Bagaa, Miloud; Badache, Nadjib
    The recent wireless sensor network applications are resource greedy in terms of throughput and network reliability. However, the wireless shared medium leads to links interferences in addition to wireless losses due to the harsh environment. The effect of these two points translates on differences in links bandwidth capacities, lack of reliability and throughput degradation. In this study, we tackle the problem of throughput maximization by proposing an efficient congestion control-based schedule algorithm, dubbed REFIACC (Reliable, Efficient, Fair and Interference-Aware Congestion Control) protocol. REFIACC prevents the interferences and ensures a high fairness of bandwidth utilization among sensor nodes by scheduling the communications. The congestion and the interference in inter and intra paths hot spots are mitigated through tacking into account the dissimilarity between links' capacities at the scheduling process. Linear programming is used to reach optimum utilization efficiency of the maximum available bandwidth. REFIACC has been evaluated by simulation and compared with two pertinent works. The results show that the proposed solution outperforms the others in terms of throughput and reception ratio (more than 80%) and can scale for large networks.
  • Thumbnail Image
    Item
    On the Effect of Sensing-Holes in PIR-based Occupancy Detection Systems
    (2016-02-20) Ouadjaout, Abdelraouf; Lasla, Noureddine; Djenouri, Djamel; Zizoua, Cherif
    Sensing-holes in PIR-based motion detection systems are considered, and their impact on occupancy monitoring applications is investigated. To our knowledge, none of prior works on PIR-based systems consider the presence of these holes, which represents the major cause for low precision of such systems in environments featured with very low mobility of occupants, such as working offices. We consider optimal placement of PIRs that ensures maximum coverage in presence of holes. The problem is formulated as a mixed integer linear programming optimization problem (MILP). Based on this formulation, an experimental study on a typical working office has been carried out. The empirical results quantify the effects of the holes on the detection accuracy and demonstrate the enhancement provided by the optimal deployment of the solution.
  • Thumbnail Image
    Item
    On optimal anchor placement for effecient area-based localization in wireless networks
    (CERIST, 2015-06-08) Lasla, Noureddine; Younis, Mohamed; Ouadjaout, Abdelraouf; Badache, Nadjib
    Area-based localization is a simple and efficient approach, where each node estimates its position based on proxim- ity information to some special nodes with known location, called anchors. Based on the anchors’ coordinates, each node first determines its residence area and then approximates its position as the centroid of that area. Therefore, the accu- racy of the estimated position depends on the size of the residence area; the smaller the residence area is, the bet- ter the accuracy is likely to be. Because the size of the residence area mainly depends on the number and the posi- tions of anchor nodes, their deployment should be carefully considered in order to achieve a better accuracy while mini- mizing the cost. For this purpose, in this paper we conduct a theoretical study on anchor placement for a very popular area based localization approach. We determine the optimal anchor placement pattern for increased accuracy and how to achieve a particular accuracy goal with the least anchor count. Our analytical results are further validated through simulation.
  • Thumbnail Image
    Item
    SMART: Secure Multi-pAths Routing for wireless sensor neTworks
    (CERIST, 2014-06-22) Lasla, Noureddine; Derhab, Abdelouahid; Ouadjaout, Abdelraouf; Bagaa, Miloud; Challal, Yacine
    Abstract. In this paper, we propose a novel secure routing protocol named Secure two-hop disjoint Multi-pAths Routing for wireless sensor neTworks (SMART) as well as its underlying key management scheme named Extended Two-hop Keys Establishment (ETKE). The proposed framework keeps consistent routing topology by protecting the hop count information from being forged. The two-hop scheme ensures immediate verification and fast detection of inconsistent routing information with- out referring to the sink node. We prove that it is sufficient to keep only two-hop disjoint paths to ensure full-resilience against node capture attacks. We have demonstrated through simulations that our solution outperforms a comparative solution in literature. In addition, ETKE is more resilient to node capture attacks than the probabilistic key man- agement schemes.