Academic & Scientific Articles
Permanent URI for this communityhttp://dl.cerist.dz/handle/CERIST/3
Browse
3 results
Search Results
Item Privacy-preserving remote deep-learning-based inference under constrained client-side environment(Springer, 2023) Boulemtafes, Amine; Derhab, Abdelouahid; Ait Ali Braham, Nassim; Challal , YacineRemote deep learning paradigm raises important privacy concerns related to clients sensitive data and deep learning models. However, dealing with such concerns may come at the expense of more client-side overhead, which does not fit applications relying on constrained environments. In this paper, we propose a privacy-preserving solution for deep-learning-based inference, which ensures effectiveness and privacy, while meeting efficiency requirements of constrained client-side environments. The solution adopts the non-colluding two-server architecture, which prevents accuracy loss as it avoids using approximation of activation functions, and copes with constrained client-side due to low overhead cost. The solution also ensures privacy by leveraging two reversible perturbation techniques in combination with paillier homomorphic encryption scheme. Client-side overhead evaluation compared to the conventional homomorphic encryption approach, achieves up to more than two thousands times improvement in terms of execution time, and up to more than thirty times improvement in terms of the transmitted data size.Item Investigating Security and Privacy Concerns in Deep-Learning-based Pervasive Health Monitoring Architectures(IEEE, 2023-11) Boulemtafes, Amine; Amira, Abdelouahab; Derki, Mohamed Saddek; Hadjar, SamirPervasive Health Monitoring (PHM) uses sensors and wearable devices and data analytics for real-time health monitoring. It enables early detection and personalized care interventions. This technology has the potential to revolutionize healthcare by improving proactive and preventive care.Besides, Deep learning (DL) based PHM is even more promising as it improves the discovery of complex patterns and correlations. This leads to precise health monitoring and personalized care, enhances diagnostics, and ultimately improves patient outcomes in the field of healthcare.However, privacy and security considerations must be addressed for successful implementation. This paper investigates the security and privacy concerns in Pervasive Health Monitoring architectures. It discusses through an illustrative DL-based PHM architecture the potential threats and attacks during the inference and training phases, and identifies key security and privacy issues. It also gives insights on countermeasures and technological solutions that can address security and privacy concerns in PHM architectures.Item A new hybrid model of convolutional neural networks and hidden Markov chains for image classification(Springer, 2023-05) Goumiri, Soumia; Benboudjema , Dalila; Pieczynski, WojciechConvolutional neural networks (CNNs) have lately proven to be extremely effective in image recognition. Besides CNN, hidden Markov chains (HMCs) are probabilistic models widely used in image processing. This paper presents a new hybrid model composed of both CNNs and HMCs. The CNN model is used for feature extraction and dimensionality reduction and the HMC model for classification. In the new model, named CNN-HMC, convolutional and pooling layers of the CNN model are applied to extract features maps. Also a Peano scan is applied to obtain several HMCs. Expectation–Maximization (EM) algorithm is used to estimate HMC’s parameters and to make the Bayesian Maximum Posterior Mode (MPM) classification method used unsupervised. The objective is to enhance the performances of the CNN models for the image classification task. To evaluate the performance of our proposal, it is compared to six models in two series of experiments. In the first series, we consider two CNN-HMC and compare them to two CNNs, 4Conv and Mini AlexNet, respectively. The results show that CNN-HMC model outperforms the classical CNN model, and significantly improves the accuracy of the Mini AlexNet. In the second series, it is compared to four models CNN-SVMs, CNN-LSTMs, CNN-RFs, and CNN-gcForests, which only differ from CNN-HMC by the second classification step. Based on five datasets and four metrics recall, precision, F1-score, and accuracy, results of these comparisons show again the interest of the proposed CNN-HMC. In particular, with a CNN model of 71% of accuracy, the CNN-HMC gives an accuracy ranging between 81.63% and 92.5%.