Academic & Scientific Articles
Permanent URI for this communityhttp://dl.cerist.dz/handle/CERIST/3
Browse
2 results
Search Results
Item A cooperative framework for automated segmentation of tumors in brain MRI images(Springer, 2023-03) Hadjadj, ZinebBrain tumor segmentation from 2D Magnetic Resonance Images (MRI) is an important task for several applications in the field of medical analysis. Commonly, this task is performed manually by medical professionals, but it is not always obvious due to similarities between tumors and normal tissue and variations in tumor appearance. Therefore, the automation of medical image segmentation remains a real challenge that has attracted the attention of several researchers in recent years. Instead of choosing between region and contour approaches, in this article, we propose a region-edge cooperative method for brain tumor segmentation from MRI images. The region approach used is support vector machines (SVMs), one of the popular and highly motivated classification methods, the method distinguishes between normal and abnormal pixels based on some features: intensity and texture. To control and guide the segmentation region, we take advantage of the Ron Kimmel geodesic Active Contour Model (ACM) which produces a good delimitation of the boundaries of the object. The two methods have been cooperated sequentially in order to obtain a flexible and effective system for brain tumor segmentation. Experimental studies are performed on synthetic and real 2D MRI images of various modalities from the radiology unit of the university hospital center in Bab El Oued Algeria. The used MRI images represent various tumor shapes, locations, sizes, and intensities. The proposed cooperative framework outperformed SVM-based segmentation and ACM-based segmentation when executed independently.Item Efficient Machine Learning-based Approach for Brain Tumor Detection Using the CAD System(Taylor & Francis, 2023-04) Guerroudji, Mohamed Amine; Hadjadj, Zineb; Lichouri, Mohamed; Amara, Kahina; Zenati, NadiaMedical research has focused on improving diagnosis through medical imaging in recent decades. Computer Assisted Diagnosis (CAD) systems have been developed to help doctors identify suspicious areas of interest, particularly those with cancer-like characteristics. CAD systems employ various algorithms and techniques to extract important numerical measurements from medical images that clinicians can use to evaluate patient conditions. This study proposes a statistical classification-based approach to efficient brain cancer detection. The proposed approach operates in three stages: first, Gradient Vector Flow (GVF) Snake models and mathematical morphology techniques retrieve regions of interest. The second stage characterizes these regions using morphological and textural parameters. Finally, a Bayesian network uses this description as input to identify malignant and benign cancer classes. We also compared the performance of the Bayesian network with other popular classification algorithms, including SVM, MLP, KNN, Random Forest, Decision Tree, XGBoost, LGBM, Gaussian Process, and RBF SVM. The results showed the superiority of the Bayesian network for the task of brain tumor classification. The proposed approach has been experimentally validated, with a sensitivity of 100% and a classification accuracy of over 98% for tumors, demonstrating the high efficiency of cancer cell segmentation.