Efficient tree-structured categorical retrieval

dc.contributor.authorBelazzougui, Djamal
dc.contributor.authorKucherov, Gregory
dc.date.accessioned2023-10-11T14:06:15Z
dc.date.available2023-10-11T14:06:15Z
dc.date.issued2020-06-09
dc.description.abstractWe study a document retrieval problem in the new framework where D text documents are organized in a category tree with a predefined number h of categories. This situation occurs e.g. with taxomonic trees in biology or subject classification systems for scientific literature. Given a string pattern p and a category (level in the category tree), we wish to efficiently retrieve the t categorical units containing this pattern and belonging to the category. We propose several efficient solutions for this problem. One of them uses n(log σ(1+o(1))+log D + O(h)) + O(∆) bits of space and O(|p| + t) query time, where n is the total length of the documents, σ the size of the alphabet used in the documents and ∆ is the total number of nodes in the category tree. Another solution uses n(log σ(1+o(1))+O(log D))+O(∆)+O(D log n) bits of space and O(|p| + t log D) query time. We finally propose other solutions which are more space-efficient at the expense of a slight increase in query time.
dc.identifier.isbn978-3-95977-149-8
dc.identifier.issn1868-8969
dc.identifier.urihttps://dl.cerist.dz/handle/CERIST/992
dc.publisherLeibniz International Proceedings in Informatics (LIPIcs)
dc.relation.ispartofseries31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020)
dc.relation.pages1-11
dc.relation.placeCopenhagen, Denmark
dc.structureCalcul pervasif et mobile (Pervasive and Mobile Computing group)
dc.subjectPattern matching
dc.subjectDocument retrieval
dc.subjectCategory tree
dc.subjectSpace- efficient data structures
dc.titleEfficient tree-structured categorical retrieval
dc.typeConference paper
Files