Efficient self-stabilizing algorithms for minimal total k-dominating sets in graphs
dc.citation.epage | 343 | fr_FR |
dc.citation.issue | 7 | fr_FR |
dc.citation.spage | 339 | fr_FR |
dc.citation.volume | 114 | fr_FR |
dc.contributor.author | Belhoul, Yacine | |
dc.contributor.author | Yahiaoui, Saïd | |
dc.contributor.author | Kheddouci, Hamamache | |
dc.date.accessioned | 2014-04-29T09:22:36Z | |
dc.date.available | 2014-04-29T09:22:36Z | |
dc.date.issued | 2014-07 | |
dc.description.abstract | We propose the first polynomial self-stabilizing distributed algorithm for the minimal total dominating set problem in an arbitrary graph. Then, we generalize the proposed algorithm for the minimal total k -dominating set problem. Under an unfair distributed scheduler, the proposed algorithms converge in O(mn) moves starting from any arbitrary state, and require O(log n) storage per node. | fr_FR |
dc.identifier.issn | 0020-0190 | |
dc.identifier.uri | http://dl.cerist.dz/handle/CERIST/655 | |
dc.publisher | Elsevier | fr_FR |
dc.relation.ispartof | Information Processing Letters | fr_FR |
dc.rights.holder | Elsevier | fr_FR |
dc.structure | Calcul Pervasif et Mobile | fr_FR |
dc.subject | Distributed self-stabilizing algorithms | fr_FR |
dc.subject | Graph algorithms | fr_FR |
dc.subject | Minimal total dominating set | fr_FR |
dc.subject | Minimal total k-domination | fr_FR |
dc.subject | k-Tuple total dominating set | fr_FR |
dc.title | Efficient self-stabilizing algorithms for minimal total k-dominating sets in graphs | fr_FR |
dc.type | Article |