Using semantic Web to reduce the colt-sart
dc.contributor.author | Nouali, Omar | |
dc.contributor.author | Belloui, Amokrane | |
dc.date.accessioned | 2013-11-21T13:36:35Z | |
dc.date.available | 2013-11-21T13:36:35Z | |
dc.date.issued | 2009-06 | |
dc.description.abstract | Collaborative filtering systems suffer from the cold-start problems (evaluation matrix, new user/new resource problem...). In this paper, we show that using semantic information describing users and resources can reduce the problems and lead to a better precision, coverage and quality for the recommendation engine. Semantic web is the infrastructure used for managing such semantic descriptions. We also present here the results of a set of evaluation experiments. | fr_FR |
dc.identifier.isrn | CERIST-DTISI/RR--09-000000011--dz | fr_FR |
dc.identifier.uri | http://dl.cerist.dz/handle/CERIST/283 | |
dc.publisher | CERIST | |
dc.relation.ispartof | Rapports de recherche internes | |
dc.relation.ispartofseries | Rapports de recherche internes | |
dc.relation.place | Alger | |
dc.subject | Collaborative filtering | fr_FR |
dc.subject | Semantic web | fr_FR |
dc.subject | Recommendation systems | fr_FR |
dc.subject | Cold-start | fr_FR |
dc.title | Using semantic Web to reduce the colt-sart | fr_FR |
dc.type | Technical Report |