OVERHEARING IN FINANCIAL MARKETS: A Multi-agent Approach
Loading...
Date
2011
Journal Title
Journal ISSN
Volume Title
Publisher
SciTePress Science and Technology Publications
Abstract
Open complex systems as financial markets evolve in a highly dynamic and uncertain environment. They are often subject to significant fluctuations due to unanticipated behaviours and information. Modelling and simulating these systems by means of agent systems, i.e., through artificial markets is a valuable approach.
In this article, we present our model of asynchronous artificial market consisting of a set of adaptive and
heterogeneous agents in interaction. These agents represent the various market participants (investors and
institutions). Investor Agents have advanced mental models for ordinary investors which do not relay on fundamental or technical analysis methods. On one hand, these models are based on the risk tolerance and
on the other hand on the information gathered by the agents. This information results from overhearing influential investors in the market or the order books. We model the system through investor agents using learning classifier systems as reasoning models. As a result, our artificial market allows the study of overhearing impacts on the market. We also present the experimental evaluation results of our model.
Description
Keywords
Multi-agent system, Financial market, Simulation, Overhearing, Speculation, Classifier system