Toward an Approach for Job Recommender System: Leveraging Hybrid Techniques
Date
2024-11
Journal Title
Journal ISSN
Volume Title
Publisher
CERIST
Abstract
The rapid evolution of the job market, driven by digitalization and changing business environment dynamics, requires the development of sufficient job recommender systems. A significant number of challenges are facing those job seekers on LinkedIn professional social network. These LinkedIn users are seeking job-maker proposals that align with their business needs. Supporting these job seekers is a real challenge. In order to address this deficiency, we propose a methodology for job recommender systems on the professional social network LinkedIn, based on the user profiles on that platform. This paper presents a user-centric design approach and recommendation process for jobs based on the social profile of the LinkedIn users. The proposed approach to job recommendation combines hybrid techniques, integrating collaborative filtering, content-based filtering, context aware recommendation. In this paper, we introduce a user-centric and interactive framework that enables job seekers to interact with our Job Recommender System to provide the most relevant and valuable recommendations. The proposed framework is designed to addressing common challenges in the field; this approach aims to enhance recommendation accuracy and user satisfaction.
Description
Keywords
LinkedIn profile, Skills, Digitalization, Job seeker, Job makers