Stratégies d'ordonnancement conditionnelles utilisant des automates temporisés

dc.contributor.advisorMaler, Oded
dc.contributor.authorKerbaa, Abdelkarim Aziz
dc.date.accessioned2013-12-04T15:29:24Z
dc.date.available2013-12-04T15:29:24Z
dc.date.issued2006-10-02
dc.description.abstractCette thèse développe une méthodologie pour résoudre les problèmes d'ordonnancement de programmes conditionnels où savoir si une tâche doit être exécutée n'est pas connue à l'avance mais dynamiquement. Le modèle utilisé est à base d'automates temporisés représentant l'espace d'états à explorer. Le problème est donc formulé comme le calcul d'une stratégie gagnante (pire cas optimale) dans un jeu contre l'environnement. Dans un premier temps nous étudions le problème d'ordonnancement sur graphes de tâches déterministe puis nous étendons l'étude au problème d'ordonnancement avec incertitude conditionnelle. Pour les deux problèmes nous étudions différentes classes d'ordonnancements et de stratégies pour réduire l'espace d'états, des décompositions en chaînes pour réduire sa taille, puis nous investiguons plusieurs classes d'algorithmes exactes pour en évaluer l'efficacité et à partir desquels nous dérivons de bonnes heuristiques. Des résultats expérimentaux sur plusieurs exemples de benchmarks sont présentés afin de montrer l'efficacité de chaque algorithme et la précision des heuristiques proposées, puis des bornes théoriques sont déduites pour prouver la garantie de performance pire cas de chaque heuristiquefr_FR
dc.identifier.urihttp://dl.cerist.dz/handle/CERIST/465
dc.publisherUniversité Joseph Fourier -Grenoble 1fr_FR
dc.relation.ispartofThèses de Doctorat
dc.relation.placeFrancefr_FR
dc.specialityInformatiquefr_FR
dc.subjectAutomates temporisésfr_FR
dc.subjectGraphes de jeuxfr_FR
dc.titleStratégies d'ordonnancement conditionnelles utilisant des automates temporisésfr_FR
dc.typeThesis
Files
Collections