Browsing by Author "Challal, Yacine"
Now showing 1 - 20 of 21
Results Per Page
Sort Options
- ItemA study of Wireless Sensor Network Architectures and Projects for Traffic Light Monitoring(CERIST, 2012) Kafi, Mohamed Amine; Badache, Nadjib; Challal, Yacine; Bouabdallah, Abdelmadjid; Djenouri, DjamelVehicular traffic is increasing around the world, especially in urban areas. This increase results in a huge traffic congestion, which has dramatic consequences on economy, human health, and environment. Traditional methods used for traffic management, surveillance and control become inefficient in terms of performance, cost, maintenance, and support, with the increased traffic. Wireless Sensor Networks (WSN) is an emergent technology with an effective potential to overcome these difficulties, and will have a great added value to intelligent transportation systems (ITS) overall. In this survey, we review traffic light projects and solutions. We discuss their architectural and engineering challenges, and shed some light on the future trends as well.
- ItemA study of Wireless Sensor Network Architectures and Projects for Traffic Light Monitoring(Elsevier, 2012-08-27) Kafi, Mohamed Amine; Challal, Yacine; Djenouri, Djamel; Bouabdallah, Abdelmadjid; Badache, NadjibVehicular traffic is increasing around the world, especially in urban areas. This increase results in a huge traffic congestion, which has dramatic consequences on economy, human health, and environment. Traditional methods used for traffic management, surveillance and control become inefficient in terms of performance, cost, maintenance, and support, with the increased traffic. Wireless Sensor Networks (WSN) is an emergent technology with an effective potential to overcome these difficulties, and will have a great added value to intelligent transportation systems (ITS) overall. In this survey, we review traffic light projects and solutions. We discuss their architectural and engineering challenges, and shed some light on the future trends as well.
- ItemA Study of Wireless Sensor Networks for Urban Traffic Monitoring: Applications and Architectures(Procedia Computer Science, Elsevier, 2013-06-26) Kafi, Mohamed Amine; Challal, Yacine; Djenouri, Djamel; Doudou, Messaoud; Bouabdallah, Abdelmadjid; Badache, NadjibWith the constant increasing of vehicular traffic around the world, especially in urban areas, existing traffic management solutions become inefficient. This can be clearly seen in our life through persistent traffic jam and rising number of accidents. Wireless sensor networks (WSN) based intelligent transportation systems (ITS) have emerged as a cost effective technology that bear a pivotal potential to overcome these difficulties. This technology enables a new broad range of smart city applications around urban sensing including traffic safety, traffic congestion control, road state monitoring, vehicular warning services, and parking management. This manuscript gives a comprehensive review on WSN based ITS solutions. The main contribution of this paper is to classify current WSNs based ITS projects from the application perspective, with discussions on the fulfillment of the application requirements.
- ItemA survey on Wireless Sensor Networks for Urban Traffic Monitoring: Applications and Architectures(CERIST, 2012) Kafi, Mohamed Amine; Badache, Nadjib; Challal, Yacine; Bouabdallah, Abdelmadjid; Djenouri, DjamelVehicular traffic is increasing around the world, especially in urban areas. This increase results in a huge traffic congestion, which has dramatic consequences on economy, human health, and environment. Traditional methods used for traffic management, surveillance and control become inefficient in terms of performance, cost, maintenance, and support, with the increased traffic. Wireless sensor networking (WSN) is an emergent technology with an effective potential to overcome these difficulties, which will have a great added value to intelligent transportation systems (ITS). This technology enables a new broad range of smart city applications around urban sensing. This includes a variety of applications such as traffic safety, traffic congestion control, road state monitoring, vehicular safety warning services, and parking lots management. In this survey, a review on traffic management projects and solutions is provided. The architectural and engineering challenges are discussed, and some future trends are highlighted.
- ItemActivity-Based Access Control for IoT(ACM, 2015-09) Touati, Lyes; Challal, YacineIn traditional access control systems, a process is granted or not the access to a resource following a control on a single action without taking into consideration user and/or system context. In this paper we introduce a novel concept and a generalized version of context-aware access control in the Internet of Things that we name Activity Control. Our approach is aimed to be aware of the user’s context and the overall system’s one to make decision on granting or denying the requested action. To implement our concept we used a finite-state machine and the asymmetric encryption mechanism called Ciphertext-Policy Attribute-Based Encryption to achieve a real-time access policy adaptation following user’s and/or system’s context evolution.
- ItemAn Efficient and Privacy-preserving Similarity Evaluation For Big Data Analytics(ACM/IEEE, 2015-12) Gheid, Zakaria; Challal, YacineBig data systems are gathering more and more information in order to discover new values through data analytics and depth insights. However, mining sensitive personal information breaches privacy and degrades services’ reputation. Accordingly, many research works have been proposed to address the privacy issues of data analytics, but almost seem to be not suitable in big data context either in data types they support or in computation time efficiency. In this paper we propose a novel privacy-preserving cosine similarity computation protocol that will support both binary and numerical data types within an efficient computation time, and we prove its adequacy for big data high volume, high variety and high velocity.
- ItemCollaborative KP-ABE for Cloud-Based Internet of Things Applications(IEEE, 2016-05-23) Touati, Lyes; Challal, YacineKP-ABE mechanism emerges as one of the most suitable security protocol for asymmetric encryption. It has been widely used to implement access control solutions. However, due to its expensive overhead, it is difficult to consider this protocol in resource-limited networks, such as the IoT. As the cloud has become a key infrastructural support for IoT applications, it is interesting to exploit cloud resources to perform heavy operations. In this paper, a collaborative variant of KP-ABE named C-KP-ABE for cloud-based IoT applications is proposed. Our proposal is based on the use of computing power and storage capacities of cloud servers and trusted assistant nodes to run heavy operations. A performance analysis is conducted to show the effectiveness of the proposed solution.
- ItemEfficient CP-ABE Attribute/Key Management for IoT Applications(IEEE, 2015-10) Touati, Lyes; Challal, YacineCiphertext-Policy Attribute-Based Encryption (CP-ABE) is a promising cryptographic mechanism for fine-grained access control to shared data. Attribute/Key management is a keystone issue in CP-APE because of low efficiency of existing attribute revocation techniques. Indeed, existing solutions induce great side effect after each attribute revocation. The side effect induces rekeying and/or re-assignment of attributes to all users. In this paper, we propose a solution which does not require extra entities like proxies to re-encrypt data after every access policy change. Moreover, our solution does not imply latencies following access grants and revocations. We compare our solution with the batch-based CP-ABE attribute management technique and we show that our solution outperforms existing rekeying/revocation techniques in terms of overhead.
- ItemEfficient data aggregation with in-network integrity control for WSN(Elsevier, 2012-10) Bagaa, Miloud; Challal, Yacine; Ouadjaout, Abdelraouf; Lasla, Noureddine; Badache, NadjibEnergy is a scarce resource in Wireless Sensor Networks (WSN). Some studies show that more than 70% of energy is consumed in data transmission in WSN. Since most of the time, the sensed information is redundant due to geographically collocated sensors, most of this energy can be saved through data aggregation. Furthermore, data aggregation improves bandwidth usage and reduces collisions due to interference. Unfortunately, while aggregation eliminates redundancy, it makes data integrity verification more complicated since the received data is unique. In this paper, we present a new protocol that provides control integrity for aggregation in wireless sensor networks. Our protocol is based on a two-hop verification mechanism of data integrity. Our solution is essentially different from existing solutions in that it does not require referring to the base station for verifying and detecting faulty aggregated readings, thus providing a totally distributed scheme to guarantee data integrity. We carried out numerical analysis and simulations using the TinyOS environment. Results show that the proposed protocol yields significant savings in energy consumption while preserving data integrity, and outperforms comparable solutions with respect to some important performance criteria.
- ItemeSKAMI: Efficient and Scalable multi-group Key management for Advanced Metering Infrastructure in Smart Grid(IEEE, 2015-08) Benmalek, Mourad; Challal, YacineAdvanced Metering Infrastructure (AMI) is composed of systems and networks for measuring, collecting, storing, analyzing, and exploiting energy usage related data. AMI is an enabling technology for Smart Grid (SG) and hence represents a privileged target for security attacks with potentially great damage against infrastructures and privacy. For this reason, security has been identified as one of the most challenging topics in AMI development, and designing an efficient Key Management Scheme (KMS) is one of first important steps. In this paper, we propose a new scalable and efficient key management scheme that we call Efficient and Scalable Multi-group Key Management (ESMKM) for secure data communications in an Advanced Metering Infrastructure. It is an efficient and scalable key management scheme that can support unicast, multicast and broadcast communications based on an efficient Multi-group Key graph technique. An analysis of security and performance, and a comparision of our scheme with recently proposed schemes show that our KMS can be used to reduce storage overhead (reduction reaches 87%) whithout increasing the communiction overhead.
- ItemInformation Security in Wireless Sensor Networks(World Scientific, 2009-10) Ouadjaout, Abdelraouf; Bagaa, Miloud; Bachir, Abdelmalik; Challal, Yacine; Lasla, Noureddine; Khelladi, LyesIn this chapter, we provide a comprehensive survey of security issues in wireless sensor networks. We show that the main features of WSNs, namely their limited resources, wireless communications, and close physical coupling with environment, are the main causes of the their security vulnerabilities. We discuss the main attacks stemming from these vulnerabilities, along with the solutions proposed in the literature to cope with them. The security solutions are analyzed with respect to the different layers of the network protocol stack and cover the following issues: Key management, secure data dissemination, secure data aggregation, secure channel access and secure node compromise.
- ItemInstantaneous Proxy-Based Key Update for CP-ABE(IEEE, 2016-11-07) Touati, Lyes; Challal, YacineAttribute Based Encryption (ABE) scheme has been proposed to implement cryptographic fine grained access control to shared information. It allows to achieve information sharing of type one-to-many users, without considering the number of users and their identities. However, original ABE systems suffer from the non-efficiency of their attribute/key revocation mechanisms. Based on Ciphertext-Policy ABE (CP-ABE) scheme, we pro- pose an efficient proxy-based immediate private key update which does require neither re-encrypting cipher-texts, nor affect other users’ secret keys. The semi-trusted proxy, we have introduced, assists nodes during the decryption process without having ability to decrypt nodes’ data. Moreover, the proxy eliminates the 1- effects-n phenomenon from which suffer existing solutions when it comes to revoke nodes attributes. Finally, we analyze the security of our scheme and demonstrate that the proposed solution outperforms existing ones in terms of generated overheard.
- ItemPReDIHERO – Privacy-Preserving Remote Deep Learning Inference based on Homomorphic Encryption and Reversible Obfuscation for Enhanced Client-side Overhead in Pervasive Health Monitoring(IEEE, 2021) Boulemtafes, Amine; Derhab, Abdelouahid; Ait Ali Braham, Nassim; Challal, YacineHomomorphic Encryption is one of the most promising techniques to deal with privacy concerns, which is raised by remote deep learning paradigm, and maintain high classification accuracy. However, homomorphic encryption-based solutions are characterized by high overhead in terms of both computation and communication, which limits their adoption in pervasive health monitoring applications with constrained client-side devices. In this paper, we propose PReDIHERO, an improved privacy-preserving solution for remote deep learning inferences based on homomorphic encryption. The proposed solution applies a reversible obfuscation technique that successfully protects sensitive information, and enhances the client-side overhead compared to the conventional homomorphic encryption approach. The solution tackles three main heavyweight client-side tasks, namely, encryption and transmission of private data, refreshing encrypted data, and outsourcing computation of activation functions. The efficiency of the client-side is evaluated on a healthcare dataset and compared to a conventional homomorphic encryption approach. The evaluation results show that PReDIHERO requires increasingly less time and storage in comparison to conventional solutions when inferences are requested. At two hundreds inferences, the improvement ratio could reach more than 30 times in terms of computation overhead, and more than 8 times in terms of communication overhead. The same behavior is observed in sequential data and batch inferences, as we record an improvement ratio of more than 100 times in terms of computation overhead, and more than 20 times in terms of communication overhead.
- ItemPRIviLY: Private Remote Inference over fulLY connected deep networks for pervasive health monitoring with constrained client-side(Elsevier, 2023-09) Boulemtafes, Amine; Derhab, Abdelouahid; Challal, YacineRemote deep learning paradigm enables to better leverage the power of deep neural networks in pervasive health monitoring (PHM) applications, especially by addressing the constrained client-side environment. However, remote deep learning in the context of PHM requires to ensure three properties: (1) meet the high accuracy requirement of the healthcare domain, (2) satisfy the client-side constraints, and (3) cope with the privacy requirements related to the high sensitivity of health data. Different privacy-preserving solutions for remote deep learning exit in the literature but many of them fail to fully address the PHM requirements especially with respect to constrained client-side environments. To that end, we propose PRIviLY, a novel privacy-preserving remote inference solution, designed specifically for the popular Fully Connected Deep Networks (FCDNs). PRIviLY avoids the use of encryption for privacy preservation of sensitive information, in order to fully prevent accuracy loss, and to alleviate the server-side hardware requirements. Besides, PRIviLY adopts a non-colluding two-server architecture, and leverages the linear computations of FCDNs along with reversible random perturbation and permutation techniques in order to preserve privacy of sensitive information, while meeting low overhead requirement of constrained client-sides. At the cloud server, efficiency evaluation shows that PRIviLY achieves an improvement ratio of 4 to more than 15 times for communication, and a minimum improvement ratio of 135 times for computation overhead. At the intermediate server, the minimum improvement ratio is at least more than 10,900 for computation, while for communication, the improvement ratio varies from 5 to more than 21 times. As for the client-side, PRIviLY incurs an additional overhead of about 27% in terms of communication, and between 16% and at most 27% in terms of computation.
- ItemSecure and efficient disjoint multipath construction for fault tolerant routing in wireless sensor networks(Elsevier, 2011-07) Challal, Yacine; Ouadjaout, Abdelraouf; Lasla, Noureddine; Bagaa, Miloud; Abdelkarim, HadjidjIn wireless sensor networks, reliability is a design goal of a primary concern. To build a comprehensive reliable system, it is essential to consider node failures and intruder attacks as unavoidable phenomena. In this paper, we present a new intrusion-fault tolerant routing scheme offering a high level of reliability through a secure multipath routing construction. Unlike existing intrusion-fault tolerant solutions, our protocol is based on a distributed and in-network verification scheme, which does not require any referring to the base station. Furthermore, it employs a new multipath selection scheme seeking to enhance the tolerance of the network and conserve the energy of sensors. Extensive analysis and simulations using TinyOS showed that our approach improves many important performance metrics such as: the mean time to failure of the network, detection overhead of some security attacks, energy consumption, and resilience.
- ItemSecuring Distance Vector Routing Protocols for Hybrid Wireless Mish Networks(CERIST, 2010-04) Babakhouya, Abdelaziz; Challal, Yacine; Bouabdallah, Abdelmadjid; Gharout, SaidHybrid Wireless Mesh Networks (HWMNs) are currently emerging as a promising technology for a wide range of applications such as public safety, emergency response, and disaster recovery operations. HWMNs combine the concepts of mesh networks and ad hoc networks to maintain network connectivity. Routing is essential for HWMN in order to discover the network topology and built routes. The problem of all the current ad hoc routing protocols is that they trust all nodes and assume that they behave properly; therefore they are more vulnerable to nodes misbehavior. Misbehaving nodes can advertise incorrect routing information and disturb the topology building process. This attack is difficult to detect in distance vector routing protocols since nodes have no information regarding the network topology beyond the immediate neighbors. In this paper we propose a Consistency Check protocol for Distance Vector routing in HWMN environment. Our Consistency Check protocol can detect and reject false routes under the assumption that some mesh routers are trusted and do not cheat. Trough security analysis and simulation, we show that our approach is resilient to false accusation attacks while inducing an acceptable routing overhead.
- ItemSEDAN: Secure and Efficient protocol for Data Aggregation in wireless sensor Networks(IEEE, 2007-10-15) Bagaa, Miloud; Lasla, Noureddine; Ouadjaout, Abdelraouf; Challal, Yacine—Energy is a scarce resource in Wireless Sensor Networks. Some studies show that more than 70% of energy is consumed in data transmission. Since most of the time, the sensed information is redundant due to geographically collocated sensors, most of this energy can be saved through data aggregation. Furthermore, data aggregation improves bandwidth usage. Unfortunately, while aggregation eliminates redundancy, it makes data integrity verification more complicated since the received data is unique. In this paper, we present a new protocol that provides secure aggregation for wireless sensor networks. Our protocol is based on a two hops verification mechanism of data integrity. Our solution is essentially different from existing solutions in that it does not require referring to the base station for verifying and detecting faulty aggregated readings, thus providing a totally distributed scheme to guarantee data integrity. We carried out simulations using TinyOS environment. Simulation results show that the proposed protocol yields significant savings in energy consumption while preserving data integrity.
- ItemSEIF: Secure and Efficient Intrusion-Fault Tolerant Routing Protocol for Wireless Sensor Networks(IEEE, 2008-03) Ouadjaout, Abdelraouf; Challal, Yacine; Lasla, Noureddine; Bagaa, MiloudIn wireless sensor networks, reliability represents a design goal of a primary concern. To build a comprehensive reliable system, it is essential to consider node failures and intruder attacks as unavoidable phenomena. In this paper, we present a new intrusion-fault tolerant routing scheme offering a high level of reliability through a secure multi-path communication topology. Unlike existing intrusion-fault tolerant solutions, our protocol is based on a distributed and in-network verification scheme, which does not require any referring to the base station. Furthermore, it employs a new multi-path selection scheme seeking to enhance the tolerance of the network and conserve the energy of sensors. Extensive simulations with Tiny OS showed that our approach improves the overall Mean Time To Failure (MTTF) while conserving the energy resources of sensors.
- ItemSMART: Secure Multi-pAths Routing for wireless sensor neTworks(CERIST, 2014-06-22) Lasla, Noureddine; Derhab, Abdelouahid; Ouadjaout, Abdelraouf; Bagaa, Miloud; Challal, YacineAbstract. In this paper, we propose a novel secure routing protocol named Secure two-hop disjoint Multi-pAths Routing for wireless sensor neTworks (SMART) as well as its underlying key management scheme named Extended Two-hop Keys Establishment (ETKE). The proposed framework keeps consistent routing topology by protecting the hop count information from being forged. The two-hop scheme ensures immediate verification and fast detection of inconsistent routing information with- out referring to the sink node. We prove that it is sufficient to keep only two-hop disjoint paths to ensure full-resilience against node capture attacks. We have demonstrated through simulations that our solution outperforms a comparative solution in literature. In addition, ETKE is more resilient to node capture attacks than the probabilistic key man- agement schemes.
- ItemSMART: Secure Multi-pAths Routing for wireless sensor neTworks(IEEE, 2014-06-22) Lasla, Noureddine; Derhab, Abdelouahid; Ouadjaout, Abdelraouf; Bagaa, Miloud; Challal, YacineIn this paper, we propose a novel secure routing protocol named Secure Multi-pAths Routing for wireless sensor neTworks (SMART) as well as its underlying key management scheme named Extended Twohop Keys Establishment (ETKE). The proposed framework keeps consistent routing topology by protecting the hop count information from being forged. It also ensures a fast detection of inconsistent routing information without referring to the sink node. We analyze the security of the proposed scheme as well as its resilience probability against the forged hop count attack. We have demonstrated through simulations that SMART outperforms a comparative solution in literature, i.e., SeRINS, in terms of energy consumption