Research Reports
Permanent URI for this collectionhttp://dl.cerist.dz/handle/CERIST/34
Browse
10 results
Search Results
Item On optimal anchor placement for effecient area-based localization in wireless networks(CERIST, 2015-06-08) Lasla, Noureddine; Younis, Mohamed; Ouadjaout, Abdelraouf; Badache, NadjibArea-based localization is a simple and efficient approach, where each node estimates its position based on proxim- ity information to some special nodes with known location, called anchors. Based on the anchors’ coordinates, each node first determines its residence area and then approximates its position as the centroid of that area. Therefore, the accu- racy of the estimated position depends on the size of the residence area; the smaller the residence area is, the bet- ter the accuracy is likely to be. Because the size of the residence area mainly depends on the number and the posi- tions of anchor nodes, their deployment should be carefully considered in order to achieve a better accuracy while mini- mizing the cost. For this purpose, in this paper we conduct a theoretical study on anchor placement for a very popular area based localization approach. We determine the optimal anchor placement pattern for increased accuracy and how to achieve a particular accuracy goal with the least anchor count. Our analytical results are further validated through simulation.Item SMART: Secure Multi-pAths Routing for wireless sensor neTworks(CERIST, 2014-06-22) Lasla, Noureddine; Derhab, Abdelouahid; Ouadjaout, Abdelraouf; Bagaa, Miloud; Challal, YacineAbstract. In this paper, we propose a novel secure routing protocol named Secure two-hop disjoint Multi-pAths Routing for wireless sensor neTworks (SMART) as well as its underlying key management scheme named Extended Two-hop Keys Establishment (ETKE). The proposed framework keeps consistent routing topology by protecting the hop count information from being forged. The two-hop scheme ensures immediate verification and fast detection of inconsistent routing information with- out referring to the sink node. We prove that it is sufficient to keep only two-hop disjoint paths to ensure full-resilience against node capture attacks. We have demonstrated through simulations that our solution outperforms a comparative solution in literature. In addition, ETKE is more resilient to node capture attacks than the probabilistic key man- agement schemes.Item Inertial Measurement Unit: Evaluation for Indoor Positioning(CERIST, 2014-05-17) Ksentini, Dalila; Elhadi, A.Rahim; Lasla, NoureddineIn this paper, we tackle the problem of indoor positioning, where the GPS signals are unavailable and the energy consumption of battery powered mobile devices should be carefully considered during the positioning process. For this purpose, we study the inertial navigation system (INS), which uses only a set of inertial sensors, that represent an Inertial Measurement Unit (IMU), attached to the mobile without referring to any external positioning system. This technique is characterized by its low cost and low energy consumption, while ensuring an effective positioning in indoor environments. The aim of this work is to evaluate the IMU in order to develop an indoor positioning application. A set of tests were made with the accelerometer to examine its accuracy and its use in the process of positioning. The obtained results are encouraging and allowed us to develop an android based positioning application with an acceptable degree of accuracy.Item MSR : Minimum-Stop Recharging Scheme for Wireless Rechargeable Sensor Networks(CERIST, 2014-07-02) Khelladi, Lyes; Djenouri, Djamel; Badache, Nadjib; Bouabdallah, Abdelmadjid; Lasla, NoureddineThis paper deals with simultaneous energy transfer to multiple nodes for scalable wireless recharging in wireless sensor networks. All existing recharging schemes rely on the use of a mobile charger that roves the network and drops by some locations for nodes recharging. However, they focus on the efficiency of energy transfer and neglect the energy engendered by the charger movement. This is tackled in this paper, where the wireless charging is modeled as a path optimization problem for the mobile charger, with objective function to minimizing the number of stop locations in the path. Due to the NP-harness of the problem, we propose a simple but efficient heuristic. It is based on clique partitioning to find the minimum number of locations allowing the mobile charger to replenish all the node’s batteries in the network. Evaluation results demonstrate that the proposed approach significantly reduces the total energy consumption of the mobile charger, while using a low-complexity techniques that permit scalability to a higher number of nodes.Item DZ50: Energy-Efficient Wireless Sensor Mote Platform for Low Data Rate Applications(CERIST, 2014-07-07) Ouadjaout, Abdelraouf; Lasla, Noureddine; Bagaa, Miloud; Doudou, Messaoud; Zizoua, Cherif; Kafi, Mohamed Amine; Derhab, Abdelouahid; Djenouri, Djamel; Badache, NadjibA low cost and energy efficient wireless sensor mote platform for low data rate monitoring applications is presented. The new platform, named DZ50, is based on the ATmega328P micro-controller and the RFM12b transceiver, which consume very low energy in low-power mode. Considerable energy saving can be achieved by reducing the power consumption during inactive (sleep) mode, notably in low data rate applications featured by long inactive periods. Without loss of generality, spot monitoring in a Smart Parking System (SPS) and soil moisture in a Precision Irrigation System (PIS) are selected as typical representative of low data rate applications. The performance of the new platform is investigated for typical scenarios of the selected applications and compared with that of MicaZ and TelosB. Energy measurement has been carried out for different network operation states and settings, where the results reveal that the proposed platform allows to multiply the battery lifetime up to 7 times compared to MicaZ and TelosB motes in 10s sampling period scenarios.Item Interference-Aware Congestion Control Protocol for Wireless Sensor Networks(CERIST, 2014-07-07) Kafi, Mohamed Amine; Djenouri, Djamel; Ben Othman, Jalel; Ouadjaout, Abdelraouf; Bagaa, Miloud; Lasla, Noureddine; Badache, NadjibThis paper deals with congestion and interference control in wireless sensor networks (WSN), which is essential for improving the throughput and saving the scarce energy in networks where nodes have di erent capacities and tra c patterns. A scheme called IACC (Interference-Aware Congestion Control ) is proposed. It allows maximizing link capacity utilization for each node by controlling congestion and interference. This is achieved through fair maximum rate control of interfering nodes in inter and intra paths of hot spots. The proposed protocol has been evaluated by simulation, where the results rival the e ectiveness of our scheme in terms of energy saving and throughput. In particular, the results demonstrate the protocol scalability and considerable reduction of packet loss that allows to achieve as high packet delivery ratio as 80% for large networks.Item Static Analysis of Device Drivers in TinyOS(CERIST, 2014-02-05) Ouadjaout, Abdelraouf; Lasla, Noureddine; Bagaa, Miloud; Badache, NadjibIn this paper, we present SADA, a static analysis tool to verify device drivers for TinyOS applications. Its broad goal is to certify that the execution paths of the application complies with a given hardware specification. SADA can handle a broad spectrum of hardware specifications, ranging from simple assertions about the values of configuration registers, to complex behaviors of possibly several connected hardware components. The hardware specification is expressed in BIP, a language for describing easily complex interacting discrete components. The analysis of the joint behavior of the application and the hardware specification is then performed using the theory of Abstract Interpretation. We have done a set of experiments on some TinyOS applications. Encouraging results are obtained that confirm the effectiveness of our approach.Item Semi-Structured and Unstructured Data Aggregation Scheduling in Wireless Sensor Networks(CERIST, 2011-09) Bagaa, Miloud; Derhab, Abdelouahid; Badache, Nadjib; Lasla, Noureddine; Ouadjaout, AbdelraoufThis paper focuses on data aggregation scheduling problem in wireless sensor networks (WSNs), to minimize time latency. Prior works on this problem have adopted a structured approach, in which a tree-based structure is used as an input for the scheduling algorithm. As the scheduling performance mainly depends on the supplied aggregation tree, such an approach cannot guarantee optimal performance. To address this problem, we propose approaches based on Semi-structured Topology (DAS-ST) and Unstructured Topology (DAS-UT). The approaches are based on two key design features, which are : (1) simultaneous execution of aggregation tree construction and scheduling, and (2) parent selection criteria that maximize the choices of parents for each node and maximize time slot reuse. We prove that the latency of DAS-ST is upper-bounded by (b 2 arccos( 1 1+ ) c+4)R+Item Distributed Algorithm for the Actor Coverage Problem in WSN-based Precision Irrigation Applications(CERIST, 2011-05) Derhab, Abdelouahid; Lasla, NoureddineIn this paper, we study the actor coverage problem with the goal of meeting the requirements of precision irrigation applications in Wireless sensor and Actor Networks (WSANs), which are : (1) the volume of water applied by actors should match plant water demand and (2) minimizing over-irrigation to the least extent. We take a novel approach to define and resolve the actor coverage problem. Based on this approach, we propose two algorithms : Centralized Actor-Coverage-IRRIG (CACI) and Distributed Actor-Coverage-IRRIG (DACI). The existing centralized and distributed approaches for the minimum cost actor coverage problem in WSANs are not optimal for all metrics. The communication scheme of DACI is designed in the way that it can keep the advantages of the centralized and the distributed approaches without inheriting their weaknesses. DACI constructs an actor cover set with the same optimality cost as CACI while incurring low signaling overhead. Complexity analysis and simulations results show that CACI and DACI are both better than the existing centralized algorithm in terms of cover set optimality. Also, DACI is better than the existing distributed algorithm in terms of message overhead.Item Point In half symmetric LEns : A new range-free localization protocol for wireless sensor networks(CERIST, 2011-02) Lasla, Noureddine; Derhab, Abdelouahid; Ouadjaout, Abdelraouf; Bagaa, Miloud; Badache, NadjibAs location information is used by many sensor network applications, localization is considered a keystone in their design. Existing localization protocols can be classi ed as range-based or range-free approaches. Range- based approaches are costly as they require embedding each sensor node with an additional hardware to estimate inter-node distances. In contrast, the range-free approaches are cheaper, and they estimate node position by collecting information from some special nodes with known location called anchors. Thus, compared with range- based approaches, the range-free ones are more suitable for WSNs. In this paper, we propose PIV (Point In half Vesica-piscis), a new distributed range-free localization protocol for wireless sensor networks. PIV is designed based on the geometric concept of Vesica-piscis, which helps to relax some unrealistic assumptions and incur the lower cost. Complexity analysis and simulations results show that PIV has the lowest message cost among the existing localization schemes and o ers the best trade-o between location accuracy and ratio of localized nodes.