Research Reports
Permanent URI for this collectionhttp://dl.cerist.dz/handle/CERIST/34
Browse
2 results
Search Results
Item Energy-Delay Constrained Minimal Relay Placement in Low Duty-Cycled Sensor Networks Under Anycast Forwarding(CERIST, 2016-06) Doudou, Messaoud; M. Barcelo-Ordinas, Jose; Garcia-Vidal, JorgeA constrained relay placement problem satisfying application requirements in terms of network lifetime and end-to-end (e2e) delay in Wireless Sensor Networks (WSN) is investigated in this paper. The network and the traffic are adequately modeled considering uniform node deployment and low data rate periodic traffic generation. An optimization problem is defined to obtain the minimum number of relays to be deployed, at each level of the network, in order to fulfil network duty-cycle and e2e delay constraints under anycast forwarding based on the wake-up period parameter of the duty-cycle MAC protocol. Since the optimization problem is non-convex, an alternative and efficient algorithm for relay node placement called EDC-RP (Energy-Delay Constrained Relay Placement) is introduced. The comparison of the proposed node deployment strategy with state-of-the-art relay placement methods demonstrates the gain of the heuristic in terms of deployment cost (number of relays) over other solutions while fulfilling the application constraints.Item Cost Effective Node Deployment Strategy for Energy-Balanced and Delay-Efficient Data Collection in Wireless Sensor Networks(CERIST, 2014-01-08) Doudou, Messaoud; Djenouri, Djamel; M. Barcelo-Ordinas, Jose; Badache, NadjibThe real-world node deployment aspect is investigated, while considering cost minimization for resolving the energy hole around the sink, which represents a serious problem in typical sensor networks with uniform distribution. A novel strategy is proposed that is based on the use of two sinks and a few extra relay nodes close to the sinks’ areas. The traffic is then alternatively sent to the sinks in every other cycle. As a second contribution, an efficient data collection mechanism has been developed to determine the optimal data rate that meets delay requirements of individual sensor reports and improves the network lifetime. The comparison of the proposed node deployment strategy with uniform, non-uniform geometric and linear increase node distributions demonstrates that the cost of the proposed solution is very close to that of the uniform distribution and much lower than all the others, while achieving a load balancing at the same order of the state-of-the-art solutions perspective.