Research Reports

Permanent URI for this collectionhttp://dl.cerist.dz/handle/CERIST/34

Browse

Search Results

Now showing 1 - 9 of 9
  • Thumbnail Image
    Item
    On optimal anchor placement for effecient area-based localization in wireless networks
    (CERIST, 2015-06-08) Lasla, Noureddine; Younis, Mohamed; Ouadjaout, Abdelraouf; Badache, Nadjib
    Area-based localization is a simple and efficient approach, where each node estimates its position based on proxim- ity information to some special nodes with known location, called anchors. Based on the anchors’ coordinates, each node first determines its residence area and then approximates its position as the centroid of that area. Therefore, the accu- racy of the estimated position depends on the size of the residence area; the smaller the residence area is, the bet- ter the accuracy is likely to be. Because the size of the residence area mainly depends on the number and the posi- tions of anchor nodes, their deployment should be carefully considered in order to achieve a better accuracy while mini- mizing the cost. For this purpose, in this paper we conduct a theoretical study on anchor placement for a very popular area based localization approach. We determine the optimal anchor placement pattern for increased accuracy and how to achieve a particular accuracy goal with the least anchor count. Our analytical results are further validated through simulation.
  • Thumbnail Image
    Item
    SMART: Secure Multi-pAths Routing for wireless sensor neTworks
    (CERIST, 2014-06-22) Lasla, Noureddine; Derhab, Abdelouahid; Ouadjaout, Abdelraouf; Bagaa, Miloud; Challal, Yacine
    Abstract. In this paper, we propose a novel secure routing protocol named Secure two-hop disjoint Multi-pAths Routing for wireless sensor neTworks (SMART) as well as its underlying key management scheme named Extended Two-hop Keys Establishment (ETKE). The proposed framework keeps consistent routing topology by protecting the hop count information from being forged. The two-hop scheme ensures immediate verification and fast detection of inconsistent routing information with- out referring to the sink node. We prove that it is sufficient to keep only two-hop disjoint paths to ensure full-resilience against node capture attacks. We have demonstrated through simulations that our solution outperforms a comparative solution in literature. In addition, ETKE is more resilient to node capture attacks than the probabilistic key man- agement schemes.
  • Thumbnail Image
    Item
    DZ50: Energy-Efficient Wireless Sensor Mote Platform for Low Data Rate Applications
    (CERIST, 2014-07-07) Ouadjaout, Abdelraouf; Lasla, Noureddine; Bagaa, Miloud; Doudou, Messaoud; Zizoua, Cherif; Kafi, Mohamed Amine; Derhab, Abdelouahid; Djenouri, Djamel; Badache, Nadjib
    A low cost and energy efficient wireless sensor mote platform for low data rate monitoring applications is presented. The new platform, named DZ50, is based on the ATmega328P micro-controller and the RFM12b transceiver, which consume very low energy in low-power mode. Considerable energy saving can be achieved by reducing the power consumption during inactive (sleep) mode, notably in low data rate applications featured by long inactive periods. Without loss of generality, spot monitoring in a Smart Parking System (SPS) and soil moisture in a Precision Irrigation System (PIS) are selected as typical representative of low data rate applications. The performance of the new platform is investigated for typical scenarios of the selected applications and compared with that of MicaZ and TelosB. Energy measurement has been carried out for different network operation states and settings, where the results reveal that the proposed platform allows to multiply the battery lifetime up to 7 times compared to MicaZ and TelosB motes in 10s sampling period scenarios.
  • Thumbnail Image
    Item
    Interference-Aware Congestion Control Protocol for Wireless Sensor Networks
    (CERIST, 2014-07-07) Kafi, Mohamed Amine; Djenouri, Djamel; Ben Othman, Jalel; Ouadjaout, Abdelraouf; Bagaa, Miloud; Lasla, Noureddine; Badache, Nadjib
    This paper deals with congestion and interference control in wireless sensor networks (WSN), which is essential for improving the throughput and saving the scarce energy in networks where nodes have di erent capacities and tra c patterns. A scheme called IACC (Interference-Aware Congestion Control ) is proposed. It allows maximizing link capacity utilization for each node by controlling congestion and interference. This is achieved through fair maximum rate control of interfering nodes in inter and intra paths of hot spots. The proposed protocol has been evaluated by simulation, where the results rival the e ectiveness of our scheme in terms of energy saving and throughput. In particular, the results demonstrate the protocol scalability and considerable reduction of packet loss that allows to achieve as high packet delivery ratio as 80% for large networks.
  • Thumbnail Image
    Item
    Congestion Detection Strategies in Wireless sensor Networks: A Comparative Study with Testbed Experiments
    (CERIST, 2014-07-07) Kafi, Mohamed Amine; Djenouri, Djamel; Ben Othman, Jalel; Ouadjaout, Abdelraouf; Badache, Nadjib
    Event based applications of Wireless Sensor Networks (WSNs) are prone to tra c congestion, where unpredicted event detection yields simultaneous generation of tra c at spatially co-related nodes, and its propagation towards the sink. This results in loss of information and waste energy. Early congestion detection is thus of high importance in such WSN applications to avoid the propagation of such a problem and to reduce its consequences. Di erent detection metrics are used in the congestion control literature. However, a comparative study that investigates the di erent metrics in real sensor motes environment is missing. This paper focuses on this issue and compares some detection metrics in a testbed network with MICAz motes. Results show the e ectiveness of each method in di erent scenarios and concludes that the combination of bu er length and channel load constitute the better candidate for early and fictive detection.
  • Thumbnail Image
    Item
    Static Analysis of Device Drivers in TinyOS
    (CERIST, 2014-02-05) Ouadjaout, Abdelraouf; Lasla, Noureddine; Bagaa, Miloud; Badache, Nadjib
    In this paper, we present SADA, a static analysis tool to verify device drivers for TinyOS applications. Its broad goal is to certify that the execution paths of the application complies with a given hardware specification. SADA can handle a broad spectrum of hardware specifications, ranging from simple assertions about the values of configuration registers, to complex behaviors of possibly several connected hardware components. The hardware specification is expressed in BIP, a language for describing easily complex interacting discrete components. The analysis of the joint behavior of the application and the hardware specification is then performed using the theory of Abstract Interpretation. We have done a set of experiments on some TinyOS applications. Encouraging results are obtained that confirm the effectiveness of our approach.
  • Thumbnail Image
    Item
    Semi-Structured and Unstructured Data Aggregation Scheduling in Wireless Sensor Networks
    (CERIST, 2011-09) Bagaa, Miloud; Derhab, Abdelouahid; Badache, Nadjib; Lasla, Noureddine; Ouadjaout, Abdelraouf
    This paper focuses on data aggregation scheduling problem in wireless sensor networks (WSNs), to minimize time latency. Prior works on this problem have adopted a structured approach, in which a tree-based structure is used as an input for the scheduling algorithm. As the scheduling performance mainly depends on the supplied aggregation tree, such an approach cannot guarantee optimal performance. To address this problem, we propose approaches based on Semi-structured Topology (DAS-ST) and Unstructured Topology (DAS-UT). The approaches are based on two key design features, which are : (1) simultaneous execution of aggregation tree construction and scheduling, and (2) parent selection criteria that maximize the choices of parents for each node and maximize time slot reuse. We prove that the latency of DAS-ST is upper-bounded by (b 2 arccos( 1 1+ ) c+4)R+
  • Thumbnail Image
    Item
    Point In half symmetric LEns : A new range-free localization protocol for wireless sensor networks
    (CERIST, 2011-02) Lasla, Noureddine; Derhab, Abdelouahid; Ouadjaout, Abdelraouf; Bagaa, Miloud; Badache, Nadjib
    As location information is used by many sensor network applications, localization is considered a keystone in their design. Existing localization protocols can be classi ed as range-based or range-free approaches. Range- based approaches are costly as they require embedding each sensor node with an additional hardware to estimate inter-node distances. In contrast, the range-free approaches are cheaper, and they estimate node position by collecting information from some special nodes with known location called anchors. Thus, compared with range- based approaches, the range-free ones are more suitable for WSNs. In this paper, we propose PIV (Point In half Vesica-piscis), a new distributed range-free localization protocol for wireless sensor networks. PIV is designed based on the geometric concept of Vesica-piscis, which helps to relax some unrealistic assumptions and incur the lower cost. Complexity analysis and simulations results show that PIV has the lowest message cost among the existing localization schemes and o ers the best trade-o between location accuracy and ratio of localized nodes.
  • Thumbnail Image
    Item
    Efficient Multi-Path Data Aggregation Scheduling in Wireless Sensor Networks
    (CERIST, 2013) Bagaa, Miloud; Badache, Nadjib; Ouadjaout, Abdelraouf; Younis, Mohamed
    In wireless sensor networks, in-network data aggregation filters out redundant sensor readings in order to reduce the energy and bandwidth consumed in disseminating the data to the base-station. In this paper, we investigate the problem of reliable collection of aggregated data with minimal latency. The aim is to form an aggregation tree such that there are k disjoint paths from each node to the basestation and find a collision-free schedule for node transmissions so that the aggregated data reaches the base-station in minimal time. We propose a novel algorithm for Reliable and Timely dissemination of Aggregated Data (RTAD). RTAD intertwines the formation of the aggregation tree and the allocation of time slots to nodes, and assigns parents to the individual nodes in order to maximize time slot reuse. The simulation results show that RTAD outperforms competing algorithms in the literature.