Research Reports
Permanent URI for this collectionhttp://dl.cerist.dz/handle/CERIST/34
Browse
4 results
Search Results
Item Trust management in IoT routing protocol(CERIST, 2015-04-19) Djedjig, Nabil; Tandjaoui, Djamel; Medjek, FaizaThe Routing Protocol for Low-Power and Lossy Networks (RPL) is the routing protocol standardized for constrained environments such as 6LoWPAN networks, and is considered as the routing protocol of the Internet of Things (IoT). However, this protocol is subject to several internal and external attacks. In this paper, we investigate a trust management protocol in RPL. Our idea of trust management in RPL is to establish a dynamic trust relationship between the different nodes involved in routing. In fact, RPL organizes a logical representation of the network topology using control messages. In our proposed protocol, we strengthen RPL by adding a new trustworthiness metric during RPL construction and maintenance. This metric allows a node to decide whether or not to trust the other nodes during the construction of the topology.Item Evaluation of the impacts of Sybil attacks against RPL under mobility(CERIST, 2014-06) Medjek, Faiza; Tandjaoui, Djamel; Djedjig, NabilThe Routing Protocol for Low-Power and Lossy Networks (RPL) is the routing protocol standardized for constrained environments such as 6LoWPAN networks, and is considered as the routing protocol of the Internet of Things (IoT). However, this protocol is subject to several attacks that have been analyzed on static case. Nevertheless, IoT will likely present dynamic and mobile applications. In this paper, we introduce potential security threats on RPL, in particular Sybil attacks when the Sybil nodes are mobile. In addition, we present an analysis and a discussion on how network performances can be affected. Our analysis shows, under Sybil attacks while nodes are mobile, that the performances of RPL are highly affected compared to the static case. In fact, we notice a decrease in the rate of packet delivery, and an increase in control messages overhead. As a result, energy consumption at constrained nodes increases. Our proposed attacks demonstrate that Sybil mobile nodes can easily disrupt RPL and overload the network with fake messages making it unavailable. Based on the obtained results we provide some recommendations to tackle this issue.Item A Lightweight Key Management Scheme for E-health applications in the context of Internet of Things(CERIST, 2014-03-15) Abdmeziem, Riad; Tandjaoui, DjamelIn the context of Internet of Things where real world objects will automatically be part of the Internet, ehealth applications have emerged as a promising approach to provide unobtrusive support for elderly and frail people based on their situation and circumstances. However, due to the limited resource available in such systems and privacy concerns that might rise from the capture of personal data, security issues constitute a major obstacle to their deployment. Authentication of the different entities involved and data confidentiality constitute the main concerns for users that need to be addressed. In this paper, we propose a new key management scheme for an ehealth application to allow sensors and the Base Station (BS) to negotiate certain security credentials that will be used to protect the information flow. Our prtocol provides a strong level of security guaranteeing authentication and data confidentiality while the scarcity of resources is taken into consideration. The scheme is based on a lightweight Public Key Infrastructure (PKI) where the sensors have to perform only one Elliptic Curve Cryptography (ECC) decryption in the key establishment process. Data exchanges are then secured by the use of symmetric encryption. In addition, Time Stamps are used to prevent replay attacks along with Message Code Authentication (MAC) to ensure integrity.Item On the Relevance of Using Interference and Service Differentiation Routing in the Internet-of-Things(CERIST, 2013) Djenouri, Djamel; Bagula, Antoine; Karbab, ElmouatezbillahNext generation sensor networks are predicted to be deployed in the Internet-of-the-Things (IoT) with a high level of heterogeneity, using a model where the sensor motes will be equipped with different sensing and communication devices and tasked to deliver different services leading to different energy consumption patterns. The application of traditional wireless sensor routing algorithms designed for sensor motes expanding the same energy to such heterogeneous networks may lead to energy unbalance and subsequent short-lived sensor network resulting from routing the sensor readings over the most overworked sensor nodes while leaving the least used nodes idle. Building upon sensor devices service identification, this paper assess the relevance of using sensor node service differentiation to achieve efficient traffic engineering in IoT settings and its relative efficiency compared to traditional sensor routing. Performance evaluation with simulation reveals clear improvement of the proposed protocol vs. state of the art solutions in terms of load balancing, notably for critical nodes that cover more services. Results show that the proposed protocol considerably reduce the number of packets routed by critical nodes, where the difference with the compared protocol becomes more and more important as the number of nodes rises. Results also show clear reduction in the average energy consumption.