Academic & Scientific Articles

Permanent URI for this communityhttp://dl.cerist.dz/handle/CERIST/3

Browse

Search Results

Now showing 1 - 10 of 120
  • Thumbnail Image
    Item
    Networked Wireless Sensors, Active RFID, and Handheld Devices for Modern Car Park Management: WSN, RFID, and Mob Devs for Car Park Management
    (IGI Global, 2015-07-01) Djenouri, Djamel; Karbab, Elmouatezbillah; Boulkaboul, Sahar; Bagula, Antoine
    Networked wireless sensors, actuators, RFID, and mobile computing technologies are explored in this paper on the quest for modern car park management systems with sophisticated services over the emerging internet of things (IoT), where things such as ubiquitous handheld computers, smart ubiquitous sensors, RFID readers and tags are expected to be interconnected to virtually form networks that enable a variety of services. After an overview of the literature, the authors propose a scalable and lowcost car parking framework (CPF) based on the integration of aforementioned technologies. A preliminary prototype implementation has been performed, as well as experimentation of some modules of the proposed CPF. The results demonstrate proof of concept, and particularly reveal that the proposed approach for WSN deployment considerably reduces the cost and energy consumption compared to existing solutions.
  • Thumbnail Image
    Item
    DPFTT: Distributed Particle Filter for Target Tracking in the Internet of Things
    (IEEE, 2023-11-07) Boulkaboul, Sahar; Djenouri, Djamel; Bagaa, Miloud
    A novel distributed particle filter algorithm for target tracking is proposed in this paper. It uses new metrics and addresses the measurement uncertainty problem by adapting the particle filter to environmental changes and estimating the kinematic (motion-related) parameters of the target. The aim is to calculate the distance between the Gaussian-distributed probability densities of kinematic data and to generate the optimal distribution that maximizes the precision. The proposed data fusion method can be used in several smart environments and Internet of Things (IoT) applications that call for target tracking, such as smart building applications, security surveillance, smart healthcare, and intelligent transportation, to mention a few. The diverse estimation techniques were compared with the state-of-the-art solutions by measuring the estimation root mean square error in different settings under different conditions, including high-noise environments. The simulation results show that the proposed algorithm is scalable and outperforms the standard particle filter, the improved particle filter based on KLD, and the consensus-based particle filter algorithm.
  • Thumbnail Image
    Item
    IoT-DMCP: An IoT data management and control platform for smart cities
    (SCITEPRESS – Science and Technology Publications, 2019) Boulkaboul, Sahar; Djenouri, Djamel; Bouhafs, Sadmi; Belaid, Mohand
    This paper presents a design and implementation of a data management platform to monitor and control smart objects in the Internet of Things (IoT). This is through IPv4/IPv6, and by combining IoT specific features and protocols such as CoAP, HTTP and WebSocket. The platform allows anomaly detection in IoT devices and real-time error reporting mechanisms. Moreover, the platform is designed as a standalone application, which targets at extending cloud connectivity to the edge of the network with fog computing. It extensively uses the features and entities provided by the Capillary Networks with a micro-services based architecture linked via a large set of REST APIs, which allows developing applications independently of the heterogeneous devices. The platform addresses the challenges in terms of connectivity, reliability, security and mobility of the Internet of Things through IPv6. The implementation of the platform is evaluated in a smart home scenario and tested via numeric results. The results show low latency, at the order of few ten of milliseconds, for building control over the implemented mobile application, which confirm realtime feature of the proposed solution.
  • Thumbnail Image
    Item
    DFIOT: Data Fusion for Internet of Things
    (Springer Science, 2020) Boulkaboul, Sahar; Djenouri, Djamel
    In Internet of Things (IoT) ubiquitous environments, a high volume of heterogeneous data is produced from different devices in a quick span of time. In all IoT applications, the quality of information plays an important role in decision making. Data fusion is one of the current research trends in this arena that is considered in this paper. We particularly consider typical IoT scenarios where the sources measurements highly conflict, which makes intuitive fusions prone to wrong and misleading results. This paper proposes a taxonomy of decision fusion methods that rely on the theory of belief. It proposes a data fusion method for the Internet of Things (DFIOT) based on Dempster–Shafer (D–S) theory and an adaptive weighted fusion algorithm. It considers the reliability of each device in the network and the conflicts between devices when fusing data. This is while considering the information lifetime, the distance separating sensors and entities, and reducing computation. The proposed method uses a combination of rules based on the Basic Probability Assignment (BPA) to represent uncertain information or to quantify the similarity between two bodies of evidence. To investigate the effectiveness of the proposed method in comparison with D–S, Murphy, Deng and Yuan, a comprehensive analysis is provided using both benchmark data simulation and real dataset from a smart building testbed. Results show that DFIOT outperforms all the above mentioned methods in terms of reliability, accuracy and conflict management. The accuracy of the system reached up to 99.18% on benchmark artificial datasets and 98.87% on real datasets with a conflict of 0.58%. We also examine the impact of this improvement from the application perspective (energy saving), and the results show a gain of up to 90% when using DFIOT.
  • Thumbnail Image
    Item
    Multiple Benefits through Smart Home Energy Management Solutions—A Simulation-Based Case Study of a Single-Family-House in Algeria and Germany
    (mdpi, 2019-04-23) Ringel, Marc; Laidi, Roufaida; Djenouri, Djamel
    From both global and local perspectives, there are strong reasons to promote energy efficiency. These reasons have prompted leaders in the European Union (EU) and countries of the Middle East and North Africa (MENA) to adopt policies to move their citizenry toward more efficient energy consumption. Energy efficiency policy is typically framed at the national, or transnational level. Policy makers then aim to incentivize microeconomic actors to align their decisions with macroeconomic policy. We suggest another path towards greater energy efficiency: Highlighting individual benefits at microeconomic level. By simulating lighting, heating and cooling operations in a model single-family home equipped with modest automation, we show that individual actors can be led to pursue energy efficiency out of enlightened self-interest. We apply simple-to-use, easily, scalable impact indicators that can be made available to homeowners and serve as intrinsic economic, environmental and social motivators for pursuing energy efficiency. The indicators reveal tangible homeowner benefits realizable under both the market-based pricing structure for energy in Germany and the state-subsidized pricing structure in Algeria. Benefits accrue under both the continental climate regime of Germany and the Mediterranean regime of Algeria, notably in the case that cooling energy needs are considered. Our findings show that smart home technology provides an attractive path for advancing energy efficiency goals. The indicators we assemble can help policy makers both to promote tangible benefits of energy efficiency to individual homeowners, and to identify those investments of public funds that best support individual pursuit of national and transnational energy goals.
  • Thumbnail Image
    Item
    UDEPLOY: User-Driven Learning for Occupancy Sensors DEPLOYment In Smart Buildings
    (IEEE, 2018-03) Laidi, Roufaida; Djenouri, Djamel
    A solution for motion sensors deployment in smart buildings is proposed. It differentiates the monitored zones according to their occupancy, where highly-occupied zones have higher coverage requirements over low-occupied zones, and thus are assigned higher granularity in the targeted coverage (weights). The proposed solution is the first that defines a user-driven approach, which uses sampling of occupants’ behavior to determine the zones and the coverage weights. The samples are acquired during a short learning phase and then used to derive a graph model. The latter is plugged into a greedy, yet effective, algorithm that seeks optimal placement for maximizing detection accuracy while reducing the cost (number of sensors). Practical aspects such as the scalability and the applicability of the solution are considered. A simulation study that compares the proposed solution with two state-of-the-art solutions shows the superiority of the proposed approach in the accuracy of detection (increased coverage), and scalability (reduced runtime).
  • Thumbnail Image
    Item
    Machine Learning for Smart Building Applications: Review and Taxonomy
    (ACM, 2019-03) Djenouri, Djamel; Laidi, Roufaida; Djenouri, Youcef; Balasingham, Ilangko
    The use of machine learning (ML) in smart building applications is reviewed in this paper. We split existing solutions into two main classes, occupant-centric vs. energy/devices centric. The first class groups solutions that use ML for aspects related to the occupants, including (1) occupancy estimation and identification, (2) activity recognition, and (3) estimating preferences and behavior. The second class groups solutions that use ML to estimate aspects related either to energy or devices. They are divided into three categories, (1) energy profiling and demand estimation, (2) appliances profiling and fault detection, and (3) inference on sensors. Solutions in each category are presented, discussed and compared, as well as open perspectives and research trends. Compared to related state-of-the-art survey papers, the contribution herein is to provide a comprehensive and holistic review from the ML perspectives rather than architectural and technical aspects of existing building management systems. This is by considering all types of ML tools, buildings, and several categories of applications, and by structuring the taxonomy accordingly. The paper ends with a summary discussion of the presented works, with focus on lessons learned, challenges, open and future directions of research in this field.
  • Thumbnail Image
    Item
    Machine Learning for Smart Building Applications: Review and Taxonomy
    (ACM, 2019-03) Djenouri, Djamel; Laidi, Roufaida; Djenouri, Youcef; Balasingham, Ilangko
    The use of machine learning (ML) in smart building applications is reviewed in this paper. We split existing solutions into two main classes, occupant-centric vs. energy/devices centric. The first class groups solutions that use ML for aspects related to the occupants, including (1) occupancy estimation and identification, (2) activity recognition, and (3) estimating preferences and behavior. The second class groups solutions that use ML to estimate aspects related either to energy or devices. They are divided into three categories, (1) energy profiling and demand estimation, (2) appliances profiling and fault detection, and (3) inference on sensors. Solutions in each category are presented, discussed and compared, as well as open perspectives and research trends. Compared to related state-of-the-art survey papers, the contribution herein is to provide a comprehensive and holistic review from the ML perspectives rather than architectural and technical aspects of existing building management systems. This is by considering all types of ML tools, buildings, and several categories of applications, and by structuring the taxonomy accordingly. The paper ends with a summary discussion of the presented works, with focus on lessons learned, challenges, open and future directions of research in this field.
  • Thumbnail Image
    Item
    Electrical Energy Consumption Control in Buildings Using Wireless Sensor
    (CERIST, 2018-01-25) Djenouri, Djamel; Laidi, Roufaida; Zizoua, Cherif
    Energy consumption in residential and commercial buildings has increased dramatically worldwide in the last decade, due to the constant population and economic growth, the proliferation of electronic and consumer appliances. This has dramatic footprint on the environment in terms of carbon emission, in addition to the economic impact. Green and smart building strategies will play a pivotal role to reduce this footprint and maximize economic and environmental performance. These strategies can be integrated into buildings at any stage, from design and construction, to maintenance and renovation. The use of modern Information and Communication Technologies (ICT), notably IoT solutions, for building control is one of the promising strategies for the future. The aim of this project was to explore this domain, and as a first step to develop a wireless sensor networks based solution for monitoring and energy management in offices. A prototype has been targeted as a proof of concept where sensors monitor physical parameters in CERSIT offices (presence of people, ambient light, etc.), and accordingly actuate lighting, air conditioning, etc. This report is a short summery of the different parts developed in this project.
  • Item
    UDEPLOY: User-Driven Learning for Occupancy Sensors DEPLOYment In Smart Buildings
    (CERIST, 2017-12-25) Laidi, Roufaida; Djenouri, Djamel
    A solution for motion sensors deployment in smart buildings is proposed. It diferentiates the monitored zones according to their occupancy, where highly-occupied zones have higher coverage requirements over low-occupied zones, and thus are assigned higher granularity in the targeted coverage (weights). The proposed solution is the rst that de nes a user-driven approach, which uses sampling of occupants' behavior to determine the zones and the coverage weights. The samples are acquired during a short learning phase and then used to derive a graph model. The latter is plugged into a greedy, yet e ective, algorithm that seeks optimal placement for maximizing detection accuracy while reducing the cost (number of sensors). Practical aspects such as the scalability and the applicability of the solution are considered. A simulation study that compares the proposed solution with two state-of-the-art solutions shows the superiority of the proposed approach in the accuracy of detection (increased coverage), and scalability (reduced runtime).