Academic & Scientific Articles

Permanent URI for this communityhttp://dl.cerist.dz/handle/CERIST/3

Browse

Search Results

Now showing 1 - 10 of 18
  • Thumbnail Image
    Item
    Machine Learning for Smart Building Applications: Review and Taxonomy
    (ACM, 2019-03) Djenouri, Djamel; Laidi, Roufaida; Djenouri, Youcef; Balasingham, Ilangko
    The use of machine learning (ML) in smart building applications is reviewed in this paper. We split existing solutions into two main classes, occupant-centric vs. energy/devices centric. The first class groups solutions that use ML for aspects related to the occupants, including (1) occupancy estimation and identification, (2) activity recognition, and (3) estimating preferences and behavior. The second class groups solutions that use ML to estimate aspects related either to energy or devices. They are divided into three categories, (1) energy profiling and demand estimation, (2) appliances profiling and fault detection, and (3) inference on sensors. Solutions in each category are presented, discussed and compared, as well as open perspectives and research trends. Compared to related state-of-the-art survey papers, the contribution herein is to provide a comprehensive and holistic review from the ML perspectives rather than architectural and technical aspects of existing building management systems. This is by considering all types of ML tools, buildings, and several categories of applications, and by structuring the taxonomy accordingly. The paper ends with a summary discussion of the presented works, with focus on lessons learned, challenges, open and future directions of research in this field.
  • Thumbnail Image
    Item
    Machine Learning for Smart Building Applications: Review and Taxonomy
    (ACM, 2019-03) Djenouri, Djamel; Laidi, Roufaida; Djenouri, Youcef; Balasingham, Ilangko
    The use of machine learning (ML) in smart building applications is reviewed in this paper. We split existing solutions into two main classes, occupant-centric vs. energy/devices centric. The first class groups solutions that use ML for aspects related to the occupants, including (1) occupancy estimation and identification, (2) activity recognition, and (3) estimating preferences and behavior. The second class groups solutions that use ML to estimate aspects related either to energy or devices. They are divided into three categories, (1) energy profiling and demand estimation, (2) appliances profiling and fault detection, and (3) inference on sensors. Solutions in each category are presented, discussed and compared, as well as open perspectives and research trends. Compared to related state-of-the-art survey papers, the contribution herein is to provide a comprehensive and holistic review from the ML perspectives rather than architectural and technical aspects of existing building management systems. This is by considering all types of ML tools, buildings, and several categories of applications, and by structuring the taxonomy accordingly. The paper ends with a summary discussion of the presented works, with focus on lessons learned, challenges, open and future directions of research in this field.
  • Thumbnail Image
    Item
    Data Mining-Based Decomposition for Solving the MAXSAT Problem: Toward a New Approach
    (IEEE, 2017-06) Djenouri, Youcef; Habbas, Zineb; Djenouri, Djamel
    A new approach decomposes a MAXSAT instance and then applies clustering via data mining decomposition techniques, with every cluster resulting from the decomposition separately solved to construct a partial solution. All partial solutions are then merged to build the global solution.
  • Thumbnail Image
    Item
    New GPU-based Swarm Intelligence Approach For Reducing Big Association Rules Space
    (CERIST, 2017-06-14) Djenouri, Youcef; Bendjoudi, Ahcène; Djenouri, Djamel; Belhadi, Asma; Nouali-Taboudjemat, Nadia
    This paper deals with exploration and mining of association rules in big data, with the big challenge of increasing computation time. We propose a new approach based on meta-rules discovery that gives to the user the summary of the rules’ space through a meta-rules representation. This allows the user to decide about the rules to take and prune. We also adapt a pruning strategy of our previous work to keep only the representatives rules. As the meta-rules space is much larger than the rules space, two approaches are proposed for efficient exploitation. The first one uses a bees swarm optimization method in the meta-rules discovery process, which is extended using GPU-based parallel programming to form the second one. The sequential version has been first tested using medium rules set, and the results show clear improvement in terms of the number of returned meta-rules. The two versions have then been compared on large scale rules sets, and the results illustrate the acceleration on the summarization process by the parallel approach without reducing the quality of resulted meta-rules. Further experiments on Webdocs big data instances reveal that the proposed method of pruning rules by summarizing meta-rules considerably reduces the association rules space compared to state-of-the-art association rules mining-based approaches.
  • Thumbnail Image
    Item
    GPU-based Bio-inspired Model for Solving Association Rules Mining Problem
    (CERIST, 2017-03-06) Djenouri, Youcef; Bendjoudi, Ahcène; Djenouri, Djamel; Commuzi, Marco
    problem with the purpose of extracting the correlations between items in sizeable data instances. According to the state of the art, the bio-inspired approaches proved their usefulness by finding high number of satisfied rules in a reasonable time when dealing with medium size instances. These approaches are unsuitable for large databases and especially for those existing on the web such as the Webdocs instance. Recently, the Graphics Processor Units (GPU) is considered as one of the most used parallel hardware to solve large scientific complex problems. In this paper, we propose a new GPU-based model of the bio-inspired approaches for solving association rules mining problem. Our model benefits from the massively GPU threaded by evaluating multiple rules in parallel on GPU. To validate the proposed model, the most used bio-inspired approaches (GA, PSO, and BSO) have been executed on GPU to solve well-known large ARM instances. Real experiments have been carried out on an Intel Xeon 64 bit quad-core processor E5520 coupled to an Nvidia Tesla C2075 GPU device. The results show that the genetic algorithm outperforms PSO and BSO. Moreover, it outperforms the state-of-the-art GPU-based ARM approaches when dealing with the challenging Webdocs instance.
  • Thumbnail Image
    Item
    Parallel BSO Algorithm for Association Rules Mining Using Master/Worker Paradigm
    (2015-09-06) Djenouri, Youcef; Bendjoudi, Ahcène; Djenouri, Djamel; Habbas, Zineb
    The extraction of association rules from large transactional databases is considered in the paper using cluster architecture parallel computing. Motivated by both the successful sequential BSO-ARM algorithm, and the strong matching between this algorithm and the structure of the cluster architectures, we present in this paper a new parallel ARM algorithm that we call MW-BSO-ARM for Master/Workers version of BSO-ARM. The goal is to deal with large databases by minimizing the communication and synchronization costs, which represent the main challenges that faces any cluster architecture. The experimental results are very promising and show clear improvement that reaches 300% for large instances. For examples, in big transactional database such as WebDocs, the proposed approach generates 107 satisfied rules in only 22 minutes, while a previous GPU-based approach cannot generate more than 103 satisfied rules into 10 hours. The results also reveal that MWBSO-ARM outperforms the PGARM cluster-based approach in terms of computation time.
  • Thumbnail Image
    Item
    Reducing thread divergence in GPU-based bees swarm optimization applied to association rule mining
    (John Wiley & Sons, Ltd., 2016) Bendjoudi, Ahcène; Djenouri, Youcef; Habbas, Zineb; Mehdi, Malika; Djenouri, Djamel
    The association rules mining (ARM) problem is one of the most important problems in the area of data mining. It aims at finding all relevant association rules from transactional databases. It is CPU time intensive and requires a huge computing power when dealing with large transactional databases. To deal with this issue, Graphics Processing Units (GPUs) are a powerful tool to speed up the search process. However, their performance is closely subject to thread/branch divergence resulting from the single instruction multiple data parallel model of GPUs. In this paper, we propose three approaches based on database reorganization, aiming to reduce thread divergence in GPU-based bees swarm optimization metaheuristic for ARM, respectively, named block-based reordering, transactions-based reordering, and transactions-based reordering with median value. Theoretical and experimental studies have been carried out using well-known large ARM instances. The experiments have been performed on an Intel Xeon 64 bit quad-core processor E5520 coupled to Nvidia Tesla C2075 448 cores. The results show that the proposed approaches minimize considerably the number of thread divergence and improve the overall execution time. Indeed, the number of thread divergence occurrences has been reduced by up to eight times making the execution much faster.
  • Thumbnail Image
    Item
    Parallel BSO Algorithm for Association Rules Mining using Master/Workers Paradigm
    (CERIST, 2015-07-07) Djenouri, Youcef; Bendjoudi, Ahcène; Djenouri, Djamel
    The extraction of association rules from large transactional databases is considered in the paper using cluster architecture parallel computing. Motivated by both the successful sequential BSO-ARM algorithm, and the strong matching between this algorithm and the structure of the cluster architectures, we present in this paper a new parallel ARM algorithm that we call MW-BSO-ARM for Master/Workers version of BSO-ARM. The goal is to deal with large databases by minimizing the communication and synchronization costs, which represent the main challenges that faces any cluster architecture. The experimental results are very promising and show clear improvement that reaches 300% for large instances. For examples, in big transactional database such as WebDocs, the proposed approach generates 107 satisfied rules in only 22 minutes, while a previous GPU-based approach cannot generate more than 103 satisfied rules into 10 hours. The results also reveal that MWBSO-ARM outperforms the PGARM cluster-based approach in terms of computation time.
  • Thumbnail Image
    Item
    Data reordering for minimizing threads divergence in GPU-based evaluating association rules
    (CERIST, 2015-03-26) Djenouri, Youcef; Bendjoudi, Ahcène; Mehdi, Malika; Habbas, Zineb; Nouali-Taboudjemat, Nadia
    This last decade, the success of Graphics Processor Units (GPUs) has led researchers to launch a lot of works on solving large complex problems by using these cheap and powerful architecture. Association Rules Mining (ARM) is one of these hard problems requiring a lot of computational resources. Due to the exponential increase of data bases size, existing algorithms for ARM problem become more and more inefficient. Thus, research has been focusing on parallelizing these algorithms. Recently, GPUs are starting to be used to this task. However, their major drawback is the threads divergence problem. To deal with this issue, we propose in this paper an intelligent strategy called Transactions- based Reordering "TR" allowing an efficient evaluation of association rules on GPU by minimizing threads divergence. This strategy is based on data base re-organization. To validate our proposition, theoretical and experimental studies have been carried out using well-known synthetic data sets. The results are very promising in terms of minimizing the number of threads divergence.
  • Thumbnail Image
    Item
    Data reordering for minimizing threads divergence in GPU-based evaluating association rules
    (2015-06) Djenouri, Youcef; Bendjoudi, Ahcène; Mehdi, Malika; Habbas, Zineb; Nouali-Taboudjemat, Nadia
    This last decade, the success of Graphics Processor Units (GPUs) has led researchers to launch a lot of works on solving large complex problems by using these cheap and powerful architecture. Association Rules Mining (ARM) is one of these hard problems requiring a lot of computational resources. Due to the exponential increase of data bases size, existing algorithms for ARM problem become more and more inefficient.Thus, research has been focusing on parallelizing these algorithms. Recently, GPUs are starting to be used to this task. However, their major drawback is the threads divergence problem. To deal with this issue, we propose in this paper an intelligent strategy called transactions-based Reordering ”TR” allowing an efficient evaluation of association rules on GPU by minimizing threads divergence. This strategy is based on data base re-organization. To validate our proposition, theoretical and experimental studies have been carried out using well-known synthetic datasets. The results are very promising in terms of minimizing the number of threads divergence.