Browsing by Author "Habbas, Zineb"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- ItemData Mining-Based Decomposition for Solving the MAXSAT Problem: Toward a New Approach(IEEE, 2017-06) Djenouri, Youcef; Habbas, Zineb; Djenouri, DjamelA new approach decomposes a MAXSAT instance and then applies clustering via data mining decomposition techniques, with every cluster resulting from the decomposition separately solved to construct a partial solution. All partial solutions are then merged to build the global solution.
- ItemData reordering for minimizing threads divergence in GPU-based evaluating association rules(CERIST, 2015-03-26) Djenouri, Youcef; Bendjoudi, Ahcène; Mehdi, Malika; Habbas, Zineb; Nouali-Taboudjemat, NadiaThis last decade, the success of Graphics Processor Units (GPUs) has led researchers to launch a lot of works on solving large complex problems by using these cheap and powerful architecture. Association Rules Mining (ARM) is one of these hard problems requiring a lot of computational resources. Due to the exponential increase of data bases size, existing algorithms for ARM problem become more and more inefficient. Thus, research has been focusing on parallelizing these algorithms. Recently, GPUs are starting to be used to this task. However, their major drawback is the threads divergence problem. To deal with this issue, we propose in this paper an intelligent strategy called Transactions- based Reordering "TR" allowing an efficient evaluation of association rules on GPU by minimizing threads divergence. This strategy is based on data base re-organization. To validate our proposition, theoretical and experimental studies have been carried out using well-known synthetic data sets. The results are very promising in terms of minimizing the number of threads divergence.
- ItemData reordering for minimizing threads divergence in GPU-based evaluating association rules(2015-06) Djenouri, Youcef; Bendjoudi, Ahcène; Mehdi, Malika; Habbas, Zineb; Nouali-Taboudjemat, NadiaThis last decade, the success of Graphics Processor Units (GPUs) has led researchers to launch a lot of works on solving large complex problems by using these cheap and powerful architecture. Association Rules Mining (ARM) is one of these hard problems requiring a lot of computational resources. Due to the exponential increase of data bases size, existing algorithms for ARM problem become more and more inefficient.Thus, research has been focusing on parallelizing these algorithms. Recently, GPUs are starting to be used to this task. However, their major drawback is the threads divergence problem. To deal with this issue, we propose in this paper an intelligent strategy called transactions-based Reordering ”TR” allowing an efficient evaluation of association rules on GPU by minimizing threads divergence. This strategy is based on data base re-organization. To validate our proposition, theoretical and experimental studies have been carried out using well-known synthetic datasets. The results are very promising in terms of minimizing the number of threads divergence.
- ItemGPU-based Bees Swarm Optimization for Association Rules Mining(Springer, 2014) Djenouri, Youcef; Bendjoudi, Ahcène; Mehdi, Malika; Nouali-Taboudjemat, Nadia; Habbas, ZinebAssociation Rules Mining (ARM) is a well-known combinatorial optimization problem aiming at extracting relevant rules from given large scale data sets. According to the state of the art, the bio-inspired methods proved their efficiency by generating acceptable solutions in a reasonable time when dealing with small and medium size instances. Unfortunately, to cope with large instances such as the webdocs benchmark, these methods require more and more powerful processors and are time expensive. Nowadays, computing power is no longer a real issue. It can be provided by the power of emerging technologies such as GPUs that are massively multi-threaded processors. In this paper, we investigate the use of GPUs to speed up the computation. We propose two GPU-based bees swarm algorithms for association rules mining (SE-GPU and ME-GPU). SE-GPU aims at evaluating one rule at a time where each thread is associated with one transaction, whereas ME-GPU evaluates multiple rules in parallel on GPU where each thread is associated with several transactions. To validate our approaches, the two algorithms have been executed to solve well-known large ARM instances. Real experiments have been carried out on an Intel Xeon 64 bit quad-core processor E5520 coupled to an Nvidia Tesla C2075 GPU device. The results show that our approaches improve the execution time up to x100 over the sequential mono-core BSO-ARM algorithm. Moreover, the proposed approaches have been compared with CPU multi-core ones (1 to 8 cores). The results show that they are faster than the multi-core versions what ever the number of used cores.
- ItemParallel Association Rules Mining Using GPUs and Bees Behaviors(CERIST, 2014-06-24) Djenouri, Youcef; Bendjoudi, Ahcène; Mehdi, Malika; Nouali-Taboudjemat, Nadia; Habbas, ZinebThis paper addresses the problem of association rules mining with large data sets using bees behaviors. The bees swarm optimization method have been successfully applied on small and medium data size. Nevertheless, when dealing Webdocs benchmark (the largest benchmark on the web), it is bluntly blocked after more than 15 days. Additionally, Graphic processor Units are massively threaded providing highly intensive computing and very usable by the optimization research community. The parallelization of such method on GPU architecture can be deal large data sets as the case of WebDocs in real time. In this paper, the evaluation process of the solutions is parallelized. Experimental results reveal that the suggested method outperforms the sequential version at the order of ×100 in most data sets, furthermore, the WebDocs benchmark is handled with less than ten hours.
- ItemParallel BSO Algorithm for Association Rules Mining Using Master/Worker Paradigm(2015-09-06) Djenouri, Youcef; Bendjoudi, Ahcène; Djenouri, Djamel; Habbas, ZinebThe extraction of association rules from large transactional databases is considered in the paper using cluster architecture parallel computing. Motivated by both the successful sequential BSO-ARM algorithm, and the strong matching between this algorithm and the structure of the cluster architectures, we present in this paper a new parallel ARM algorithm that we call MW-BSO-ARM for Master/Workers version of BSO-ARM. The goal is to deal with large databases by minimizing the communication and synchronization costs, which represent the main challenges that faces any cluster architecture. The experimental results are very promising and show clear improvement that reaches 300% for large instances. For examples, in big transactional database such as WebDocs, the proposed approach generates 107 satisfied rules in only 22 minutes, while a previous GPU-based approach cannot generate more than 103 satisfied rules into 10 hours. The results also reveal that MWBSO-ARM outperforms the PGARM cluster-based approach in terms of computation time.
- ItemParallel Rules Mining Using GPUs and Bees Behaviors(2014-08) Djenouri, Youcef; Bendjoudi, Ahcène; Mehdi, Malika; Nouali-Taboudjemat, Nadia; Habbas, ZinebThis paper addresses the problem of association rules mining with large data sets using bees behaviors. The bees swarm optimization method have been successfully applied on small and medium data size. Nevertheless, when dealing Webdocs benchmark (the largest benchmark on the web), it is bluntly blocked after more than 15 days. Additionally, Graphic processor Units are massively threaded providing highly intensive computing and very usable by the optimization research community. The parallelization of such method on GPU architecture can be deal large data sets as the case of WebDocs in real time. In this paper, the evaluation process of the solutions is parallelized. Experimental results reveal that the suggested method outperforms the sequential version at the order of ×100 in most data sets, furthermore, the WebDocs benchmark is handled with less than ten hours.
- ItemReducing thread divergence in GPU-based bees swarm optimization applied to association rule mining(John Wiley & Sons, Ltd., 2016) Bendjoudi, Ahcène; Djenouri, Youcef; Habbas, Zineb; Mehdi, Malika; Djenouri, DjamelThe association rules mining (ARM) problem is one of the most important problems in the area of data mining. It aims at finding all relevant association rules from transactional databases. It is CPU time intensive and requires a huge computing power when dealing with large transactional databases. To deal with this issue, Graphics Processing Units (GPUs) are a powerful tool to speed up the search process. However, their performance is closely subject to thread/branch divergence resulting from the single instruction multiple data parallel model of GPUs. In this paper, we propose three approaches based on database reorganization, aiming to reduce thread divergence in GPU-based bees swarm optimization metaheuristic for ARM, respectively, named block-based reordering, transactions-based reordering, and transactions-based reordering with median value. Theoretical and experimental studies have been carried out using well-known large ARM instances. The experiments have been performed on an Intel Xeon 64 bit quad-core processor E5520 coupled to Nvidia Tesla C2075 448 cores. The results show that the proposed approaches minimize considerably the number of thread divergence and improve the overall execution time. Indeed, the number of thread divergence occurrences has been reduced by up to eight times making the execution much faster.