International Conference Papers
Permanent URI for this collectionhttp://dl.cerist.dz/handle/CERIST/4
Browse
2 results
Search Results
Item Efficient QoS-aware Heterogeneous Architecture for Energy-Delay Constrained Connected Objects(IFIP, 2016-07-11) Doudou, Messaoud; Rault, Tifenn; Bouabdallah, AbdelmadjidConnected objects such as smart phones and wireless sensors becomes very attractive for our assisted daily life applications, because it offers continuous monitoring capability of both personal and environmental parameters. However, these systems still face a major energy issue that prevent their wide adoption. Indeed, continuous sampling and communication tasks quickly deplete sensors and gateways battery reserves, and frequent battery replacement are not convenient. One solution to address such a challenge consists in minimizing the activation of radio interfaces and switching between them in order to achieve very low duty-cycle. In this paper, we propose a new efficient communication architecture for patient supervision in the context of healthcare application making use of dual radio. At runtime, our solution determines the optimal interval parameters of switching on/off each radio interfaces in order to minimize the energy consumption of both sensors and mobile phones while satisfying the QoS requirements. The proposed solution is adequately analyzed and numerically compared against a solution without QoS. The results show that our proposed architecture exhibits better duty-cycle reduction while satisfying the delay constraints.Item Slotted Contention-Based Energy-Efficient MAC Protocols in Delay-Sensitive Wireless Sensor Networks(2012-07-01) Doudou, Messaoud; Djenouri, Djamel; Badache, Nadjib; Bouabdallah, AbdelmadjidThis paper considers slotted duty-cycled medium access control (MAC) protocols, where sensor nodes periodically and synchronously alternate their operations between active and sleep modes to save energy. Communications can occur only when nodes are in active mode. The synchronous feature makes these protocols more appropriate for delay-sensitive applications than asynchronous protocols. With asynchronous protocols, additional delay is needed for the sender to meet the receiver's active period. This is eliminated with synchronous approaches, where nodes sleep and wake up all together. Moreover, the contention-based feature makes the protocols --considered in this paper-- conceptually distributed and more dynamic compared to TDMA protocols. Duty cycling allows obtaining significant energy saving vs. full duty cycle (sleepless) protocols. However, it may result in significant latency. Forwarding a packet over multiple hops often requires multiple operational cycles (sleep latency), i.e. nodes have to wait for the next cycle to forward data at each hop. Timeliness issues of slotted contention-based MAC protocols are dealt with in this paper, where a comprehensive review and taxonomy is provided. The main contribution is to study and classify the protocols from the delay-efficiency perspective.