International Conference Papers
Permanent URI for this collectionhttp://dl.cerist.dz/handle/CERIST/4
Browse
2 results
Search Results
Item Fast matching statistics in small space(Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, 2018-06-27) Belazzougui, Djamal; Cunial, Fabio; Denas, OlgertComputing the matching statistics of a string S with respect to a string T on an alphabet of size sigma is a fundamental primitive for a number of large-scale string analysis applications, including the comparison of entire genomes, for which space is a pressing issue. This paper takes from theory to practice an existing algorithm that uses just O(|T|log{sigma}) bits of space, and that computes a compact encoding of the matching statistics array in O(|S|log{sigma}) time. The techniques used to speed up the algorithm are of general interest, since they optimize queries on the existence of a Weiner link from a node of the suffix tree, and parent operations after unsuccessful Weiner links. Thus, they can be applied to other matching statistics algorithms, as well as to any suffix tree traversal that relies on such calls. Some of our optimizations yield a matching statistics implementation that is up to three times faster than a plain version of the algorithm, depending on the similarity between S and T. In genomic datasets of practical significance we achieve speedups of up to 1.8, but our fastest implementations take on average twice the time of an existing code based on the LCP array. The key advantage is that our implementations need between one half and one fifth of the competitor's memory, and they approach comparable running times when S and T are very similar.Item Representing the Suffix Tree with the CDAWG(Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, 2017-07-04) Belazzougui, Djamal; Cunial, FabioGiven a string T, it is known that its suffix tree can be represented using the compact directed acyclic word graph (CDAWG) with e_T arcs, taking overall O(e_T+e_REV(T)) words of space, where REV(T) is the reverse of T, and supporting some key operations in time between O(1) and O(log(log(n))) in the worst case. This representation is especially appealing for highly repetitive strings, like collections of similar genomes or of version-controlled documents, in which e_T grows sublinearly in the length of T in practice. In this paper we augment such representation, supporting a number of additional queries in worst-case time between O(1) and O(log(n)) in the RAM model, without increasing space complexity asymptotically. Our technique, based on a heavy path decomposition of the suffix tree, enables also a representation of the suffix array, of the inverse suffix array, and of T itself, that takes O(e_T) words of space, and that supports random access in O(log(n)) time. Furthermore, we establish a connection between the reversed CDAWG of T and a context-free grammar that produces T and only T, which might have independent interest.