International Conference Papers

Permanent URI for this collectionhttp://dl.cerist.dz/handle/CERIST/4

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Efficient QoS-aware Heterogeneous Architecture for Energy-Delay Constrained Connected Objects
    (IFIP, 2016-07-11) Doudou, Messaoud; Rault, Tifenn; Bouabdallah, Abdelmadjid
    Connected objects such as smart phones and wireless sensors becomes very attractive for our assisted daily life applications, because it offers continuous monitoring capability of both personal and environmental parameters. However, these systems still face a major energy issue that prevent their wide adoption. Indeed, continuous sampling and communication tasks quickly deplete sensors and gateways battery reserves, and frequent battery replacement are not convenient. One solution to address such a challenge consists in minimizing the activation of radio interfaces and switching between them in order to achieve very low duty-cycle. In this paper, we propose a new efficient communication architecture for patient supervision in the context of healthcare application making use of dual radio. At runtime, our solution determines the optimal interval parameters of switching on/off each radio interfaces in order to minimize the energy consumption of both sensors and mobile phones while satisfying the QoS requirements. The proposed solution is adequately analyzed and numerically compared against a solution without QoS. The results show that our proposed architecture exhibits better duty-cycle reduction while satisfying the delay constraints.
  • Thumbnail Image
    Item
    BA: Game Theoretical Approach for Energy-Delay Balancing in Distributed Duty-Cycled MAC Protocols of Wireless Networks
    (ACM, 2014-07-14) Doudou, Messaoud; M. Barcelo-Ordinas, Jose; Djenouri, Djamel; Garcia-Vidal, Jorge; Badache, Nadjib
    Optimizing energy consumption and end-to-end (e2e) packet delay in energy constrained distributed wireless networks is a conflicting multi-objective optimization problem. This paper investigates this trade-off from a game-theoretic perspective, where the two optimization objectives are considered as virtual game players that attempt to optimize their utility values. The cost model of each player is mapped through a generalized optimization framework onto protocol specific MAC parameters. A cooperative game is then defined, in which the Nash Bargaining solution assures the balance between energy consumption and e2e packet delay. For illustration, this formulation is applied to three state-of-the-art wireless sensor network MAC protocols; X-MAC, DMAC, and LMAC as representatives of preamble sampling, slotted contention-based, and frame-based MAC categories, respectively. The paper shows the effectiveness of such framework in optimizing protocol parameters for achieving a fair energy-delay performance trade-off, under the application requirements in terms of initial energy budget and maximum e2e packet delay. The proposed framework is scalable with the increase in the number of nodes, as the players represent the optimization metrics instead of nodes.