Research Reports
Permanent URI for this collectionhttp://dl.cerist.dz/handle/CERIST/34
Browse
4 results
Search Results
Item The Future of BPM in the era of industry 4.0 : exploring new opportunities for innovation(CERIST, 2025-02) Khider, Hadjer; Meziane, Abdelkrim; Hammoudi, SlimaneIn today's digital age, the fourth industrial revolution has given rise to Industry 4.0. This new paradigm has brought new challenges for organizations, through a digital transformation. This digital transformation has profoundly impacted the way businesses operate, leading to a fundamental shift in the Business Process Management (BPM), affecting business models, processes, products, relationships and competencies. This transformation is based on the use of cyber-physical systems and information and communication technologies, in particular artificial intelligence and the Internet of Things. This paper aims to identify and define the main challenges, limitations, and opportunities of BPM in the era of Industry 4.0. Furthermore, it aims to identify potential future research directions. in addition to analyzing the impact of Industry 4.0 concepts and related technologies on the management of organizations and their business processes.Item Two-tower neural network for personalizing service recommendation in cloud environment(CERIST, 2025-02) Lebib, Fatma Zohra; Meziane, AbdelkrimEffective cloud service recommendation necessitates a deep understanding of both user preferences and the diversity of cloud services. This paper proposes a novel two-tower neural network architecture to address this challenge. By leveraging the power of neural networks, we create concise representations of users and cloud services, enabling highly personalized recommendations. Our two-tower architecture is designed to efficiently scale to the massive scale of cloud environments. Each tower, dedicated to users and cloud services respectively, integrates relevant features and interaction data to generate dense embeddings. Cloud services are then ranked based on their similarity to the user’s embedding, ensuring accurate and tailored suggestions. The proposed two-tower model was evaluated on the WSdream dataset for both regression and classification tasks. Experimental results consistently demonstrated superior performance compared to state-of-the-art recommendation techniques, including k-nearest neighbors and matrix factorization.Item Applied Gaming-Based Emotion- Driven on Disaster Resilience Training(CERIST, 2024-11) Hadjar, Hayette; Hemmje, Matthias; Hadjadj, Zineb; Meziane, AbdelkrimManaging stress in disaster response environments is a critical challenge that requires effective strategies to enhance the resilience and well-being of emergency responders. This study introduces DisasterPlay, a prototype web-based platform designed for resilience training. The prototype features a comprehensive model design, user interface, and implementation using WebXR, facial emotion monitoring, and contactless vital signs monitoring. This approach not only improves the training experience but also aids decisionmakers in selecting the most suitable candidates for high-stakes tasks, thereby enhancing resource allocation. Accessible via web browsers and utilizing cloud-based data processing, this innovative platform aims to provide a robust solution for advancing disaster response strategies.Item Toward an Approach for Job Recommender System: Leveraging Hybrid Techniques(CERIST, 2024-11) Khider, Hadjer; Meziane, Abdelkrim; Hammoudi, SlimaneThe rapid evolution of the job market, driven by digitalization and changing business environment dynamics, requires the development of sufficient job recommender systems. A significant number of challenges are facing those job seekers on LinkedIn professional social network. These LinkedIn users are seeking job-maker proposals that align with their business needs. Supporting these job seekers is a real challenge. In order to address this deficiency, we propose a methodology for job recommender systems on the professional social network LinkedIn, based on the user profiles on that platform. This paper presents a user-centric design approach and recommendation process for jobs based on the social profile of the LinkedIn users. The proposed approach to job recommendation combines hybrid techniques, integrating collaborative filtering, content-based filtering, context aware recommendation. In this paper, we introduce a user-centric and interactive framework that enables job seekers to interact with our Job Recommender System to provide the most relevant and valuable recommendations. The proposed framework is designed to addressing common challenges in the field; this approach aims to enhance recommendation accuracy and user satisfaction.