International Conference Papers
Permanent URI for this collectionhttp://dl.cerist.dz/handle/CERIST/4
Browse
6 results
Search Results
Item Smaller Fully-Functional Bidirectional BWT Indexes(Springer Nature, 2020-09-17) Belazzougui,, Djamal; Cunial, FabioBurrows-Wheeler indexes that support both extending and contracting any substring of the text $T$ of length $n$ on which they are built, in any direction, provide substantial flexibility in traversing the text and can be used to implement several algorithms. The practical appeal of such indexes is contingent on them being compact, and current designs that are sensitive to the compressibility of the input take either $O(e+\REV{e})$ words of space, where $e$ and $\REV{e}$ are the number of right and left extensions of the maximal repeats of $T$, or $O(r\log(n/r)+\REV{r}\log(n/\REV{r}))$ words, where $r$ and $\REV{r}$ are the number of runs in the Burrows-Wheeler transform of $T$ and of its reverse. In this paper we describe a fully-functional bidirectional index that takes $O(m+r+\REV{r})$ words, where $m$ is the number of maximal repeats of $T$, as well as a variant that takes $O(r+\REV{r})$ words.Item Fully-Functional Bidirectional Burrows-Wheeler Indexes and Infinite-Order De Bruijn Graphs(Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, 2019-06-18) Belazzougui, Djamal; Cunial, FabioGiven a string T on an alphabet of size σ, we describe a bidirectional Burrows-Wheeler index that takes O(|T| log σ) bits of space, and that supports the addition and removal of one character, on the left or right side of any substring of T, in constant time. Previously known data structures that used the same space allowed constant-time addition to any substring of T, but they could support removal only from specific substrings of T. We also describe an index that supports bidirectional addition and removal in O(log log |T|) time, and that takes a number of words proportional to the number of left and right extensions of the maximal repeats of T. We use such fully-functional indexes to implement bidirectional, frequency-aware, variable-order de Bruijn graphs with no upper bound on their order, and supporting natural criteria for increasing and decreasing the order during traversal.Item Fast matching statistics in small space(Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, 2018-06-27) Belazzougui, Djamal; Cunial, Fabio; Denas, OlgertComputing the matching statistics of a string S with respect to a string T on an alphabet of size sigma is a fundamental primitive for a number of large-scale string analysis applications, including the comparison of entire genomes, for which space is a pressing issue. This paper takes from theory to practice an existing algorithm that uses just O(|T|log{sigma}) bits of space, and that computes a compact encoding of the matching statistics array in O(|S|log{sigma}) time. The techniques used to speed up the algorithm are of general interest, since they optimize queries on the existence of a Weiner link from a node of the suffix tree, and parent operations after unsuccessful Weiner links. Thus, they can be applied to other matching statistics algorithms, as well as to any suffix tree traversal that relies on such calls. Some of our optimizations yield a matching statistics implementation that is up to three times faster than a plain version of the algorithm, depending on the similarity between S and T. In genomic datasets of practical significance we achieve speedups of up to 1.8, but our fastest implementations take on average twice the time of an existing code based on the LCP array. The key advantage is that our implementations need between one half and one fifth of the competitor's memory, and they approach comparable running times when S and T are very similar.Item Fast Label Extraction in the CDAWG(Springer, 2017-09-06) Belazzougui, Djamal; Cunial, FabioThe compact directed acyclic word graph (CDAWG) of a string T of length n takes space proportional just to the number e of right extensions of the maximal repeats of T, and it is thus an appealing index for highly repetitive datasets, like collections of genomes from similar species, in which e grows significantly more slowly than n. We reduce from O(m log log n) to O(m) the time needed to count the number of occurrences of a pattern of length m, using an existing data structure that takes an amount of space proportional to the size of the CDAWG. This implies a reduction from O(m log log n+occ) to O(m+occ) in the time needed to locate all the occocc occurrences of the pattern. We also reduce from O(k log log n) to O(k) the time needed to read the k characters of the label of an edge of the suffix tree of T, and we reduce from O(m log log n) to O(m) the time needed to compute the matching statistics between a query of length m and T, using an existing representation of the suffix tree based on the CDAWG. All such improvements derive from extracting the label of a vertex or of an arc of the CDAWG using a straight-line program induced by the reversed CDAWG.Item Flexible Indexing of Repetitive Collections(Springer, 2017-06-07) Belazzougui, Djamal; Cunial, Fabio; Gagie, Travis; Prezza, Nicola; Raffinot, MathieuHighly repetitive strings are increasingly being amassed by genome sequencing experiments, and by versioned archives of source code and webpages. We describe practical data structures that support count- ing and locating all the exact occurrences of a pattern in a repetitive text, by combining the run-length encoded Burrows-Wheeler transform (RLBWT) with the boundaries of Lempel-Ziv 77 factors. One such vari- ant uses an amount of space comparable to LZ77 indexes, but it answers count queries between two and four orders of magnitude faster than all LZ77 and hybrid index implementations, at the cost of slower lo- cate queries. Combining the RLBWT with the compact directed acyclic word graph answers locate queries for short patterns between four and ten times faster than a version of the run-length compressed suffix ar- ray (RLCSA) that uses comparable memory, and with very short pat- terns our index achieves speedups even greater than ten with respect to RLCSA.Item Representing the Suffix Tree with the CDAWG(Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, 2017-07-04) Belazzougui, Djamal; Cunial, FabioGiven a string T, it is known that its suffix tree can be represented using the compact directed acyclic word graph (CDAWG) with e_T arcs, taking overall O(e_T+e_REV(T)) words of space, where REV(T) is the reverse of T, and supporting some key operations in time between O(1) and O(log(log(n))) in the worst case. This representation is especially appealing for highly repetitive strings, like collections of similar genomes or of version-controlled documents, in which e_T grows sublinearly in the length of T in practice. In this paper we augment such representation, supporting a number of additional queries in worst-case time between O(1) and O(log(n)) in the RAM model, without increasing space complexity asymptotically. Our technique, based on a heavy path decomposition of the suffix tree, enables also a representation of the suffix array, of the inverse suffix array, and of T itself, that takes O(e_T) words of space, and that supports random access in O(log(n)) time. Furthermore, we establish a connection between the reversed CDAWG of T and a context-free grammar that produces T and only T, which might have independent interest.